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Preface

There is a great need for A-Level textbooks in Tanzania that have been written to exactly
address the syllabi. The whole country is plagued by a lack of teachers, but especially A-level
science and mathematics teachers are hard to come by. It’s horrible to deprive the country’s
best and brightest students of a good chance at education. I think that an inexpensive Basic
Applied Mathematics textbook could greatly help A-Level science students, especially at those
schools where there is no BAM teacher.

This book is written specifically to meet the needs of the BAM student:

• It should be inexpensive.

• It goes straight to the point. For better or for worse, BAM students want to learn enough
mathematics to do problems in their subjects, currently and should the continue studying,
so that they can spend more time studying their combination subjects.

• It should address especially those topics which frequently appear on NECTA exams.

• In addition to the A-Level syllabus topics, it should provide a quick review of important
O-Level topics.

• It should be light on the theory behind the math, but have many worked examples and
exercises, included many problems from past NECTA exams.

• Whenever possible, it should address hiv/aids related issues.
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To The Student

BAM is an important subject. It’s not one of your combination subjects, but it will help you
with them. This book was written so that you can learn even if you don’t have a teacher. Of
course it’s better if you do have a teacher to guide you through the subject. But even if you
are in a place where there is no teacher, you can still learn lots by reading this book and doing
the exercises.

I have included many exercises, both for practice and from past NECTA papers. In the
back, you will find solutions to some problems, and hints to others. Please, try your level best
before looking for the answer, because on the NECTA exam there are no answers in the back.

In Appendix D, you can find instructions on how to use a condom. This is not related to
mathematics, but all the education in the world will not help you live through AIDS. The best
way to avoid AIDS is abstinence. However, if you do have sex, you can still protect yourself
by using a condom. Using a condom protects you, protects your partner, protects your future
husband or wife, and your future children. Using a condom some of the time is only a little
better than never using a condom. To completely protect yourself, you must use a condom
every time you have sex.

Some advice for all your NECTA exams:

• When it’s time to take the exam, you have been studying for 2 years. The night before
the exam, do not study late at night, 1 more hour of sleep will help you more than 1 more
hour of studying.

• In the morning just before the exam, eat something! Not a full meal to make you tired,
but something to give you some energy. If you are hungry, you will not be able to think
well.

• Also try to get a little exercise right before the exam, like jogging for 10 minutes. It will
help to wake up your body and your mind.

• When you sit down to take the exam, first read the entire test and choose which problems
you want to do. Try not to waste time on problems you don’t know well until you have
already finished the ones you can do easily.

Good Luck!
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Chapter 1

The Basics

Every student of Basic Applied Mathematics should know the contents of this chapter thor-
oughly. Most of the topics covered are in the O-Level syllabus, they have been selected as
the most important topics from O-Level that form the foundation that we will build upon in
covering the BAM syllabus.

Of course, in your O-Level studies you may not have thoroughly covered all of these topics,
but the time to learn is now. This knowledge is necessary to succeed in A-Level, and if you
are uncomfortable or slow in performing calculations from O-Level, you will find yourself out of
time on your A-Level NECTA exam. Also, some O-Level topics like functions and their inverses
(Form III) appear again in the A-Level syllabus, so they are covered here.

So, go through this chapter quickly, but if you find a topic or a method you are not familiar
with, get adequate practice. Especially look at the factoring and unit circle sections. If you are
an expert in these areas, you will find yourself able to complete problems much faster.

1.1 Algebra Revision: E x p a n d i n g and F(actoring)

1.1.1 Common Mistakes

First, we must address a common mistake that the A-Level student should never make:

(a+ b)2 = (a+ b) · (a+ b) = a2 + 2ab+ b2 (1.1)

We will not write here the mistake that is made. So many people forget about the 2ab term,
you should be smarter than them! Similarly,

(a− b)2 = (a− b) · (a− b) = a2 − 2ab+ b2, (1.2)

However,
a2 − b2 = (a+ b)(a− b) (1.3)

Look at the difference between Equations 2 and 3. They are different! Know both of these, but
don’t confuse them! For more detail on expanding (a+ b)n see section 6.4.

1.1.2 The X Factor: Factoring Polynomials

‘Factor’ means to show how different parts multiply to make the product. In factoring an ex-
pression, you want as many different things times each other as possible. You put in parentheses
( ). ‘Expand’ is the opposite. After you expand, there should be no parentheses at all. We need
to address some issues with polynomials. They are covered in more detail in section 6.1; this is
just a foundation.

We usually care about what is x when a polynomial is 0. Factoring is a very fast way to
find these values of x. For any numbers, we know that if a× b = 0, then either a is 0 or b is 0,

8



1.1. EXPANDING AND FACTORING 9

or even both. Factoring takes this one step farther. If (x + a)(x + b) = 0, then (x + a) is 0 or
(x+ b) is 0, which means that x = −a or x = −b.

If we expand (x+ a)(x+ b) we get (x+ a)(x+ b) = x2 + ax+ bx+ ab = x2 + (a+ b)x+ ab.
Factoring is doing this backwards. For example, to factor x2 + 3x+ 2 we want to make it look
like (x+ a)(x+ b). If we line it up,

x2 + 3 x + 2
x2 + (a+ b) x + ab

so we need to think of numbers a and b such that (a+b) = 3 and ab = 2. Can you think of any?
The product a · b is a good place to start looking. What numbers multiply to make 2? There
are two possibilities, 2 = 1 × 2 and 2 = −1 × −2. Now, what are the sums? −1 + −2 = −3,
that is not what we want, but 1 + 2 = 3, so it fits! Therefore

x2 + 3x+ 2 = (x+ 1)(x+ 2)

This helps us find the roots, or the values of x to make the polynomial 0 because if

x2 + 3x+ 2 = (x+ 1)(x+ 2) = 0

then, as we said before either x + 1 = 0, which means x = −1; or x + 2 = 0, which means
x = −2. So the roots of this polynomial are x = −1 or− 2.

Ex 1: Factor x2 + 4x− 5.
Solution: Think of numbers a and b such that a + b = 4 and ab = −5. Starting with the

product, possibilities are 1 and −5 or −1 and 5. The sum tells us that the answer is −1
and 5. Thus

x2 + 4x− 5 = (x+ 5)(x− 1)

is our factored polynomial. z

Ex 2: Factor 2x2 − 12x+ 16.
Solution: First we divide factor out a 2, to get 2(x2 − 6x+ 8). Then, think of numbers a and

b such that a+ b = −6 and ab = 8. Because the sum is negative, we know at least one of
the numbers is negative. But the product is positive so they must both be negative or
both be positive. Thus they are both negative. Possibilities for the product are −1 and
−8, or −2 and −4. The sum tells us that the answer is −2 and −4. Thus

2x2 − 12x+ 16 = 2(x− 2)(x− 4)

is our factored polynomial. z

Ex 3: Factor 3x2 − x− 2.
Solution: Sometimes, like here, we cannot divide by 2, but because there is a coefficient of x2

we can start with
(3x+ a)(x+ b)

But we know that ab = −2, and that a + 3b = −1. A little thought, and we find that
a = 2, b = −1. Just try a few numbers and you can usually get it. Thus

3x2 − x− 2 = (3x+ 2)(x− 1).

z

Expanding is the opposite. In expanding, you must be careful to get everything.
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Ex 4: Expand (x− 2)2(x+ 1).
Solution:

(x− 2)2(x+ 1) = (x2 − 2x− 2x+ 4)(x+ 1)

= (x2 − 4x+ 4)(x+ 1)

= x3 − 4x2 + 4x+ x2 − 4x+ 4

= x3 − 3x2 + 4

z

Another technique for simplifying things is ‘rationalizing the denominator.’ If the denomi-
nator of a fraction is a square root (or other root), it is nice to put it in the numerator instead.
This is how it’s done:

Ex 5: Rationalize the denominators of the following fractions: (a) 1√
2

. (b) 4x+1√
x

.

Solution: (a)

1√
2

=
1√
2
·
√

2√
2

We multiply by 1, in such a way that...

=
√

2
2

The denominator is not a root.

(b)

4x+ 1√
x

=
4x+ 1√

x
·
√
x√
x

=
(4x+ 1)(

√
x)

x

=
4x3/2 + x1/2

x

z

Exercises

1.1.1: Expand: (a) (z + p)2 (b) (x+ y)2

(c) (x+ 1)2 (d) (x− 3)2

1.1.2: Expand: (a) (x+ y)3 (b) (t+ 4)3

(c) (x+
√

2)(x−
√

2) (d) (
√

2 + x)(
√

2− x)

1.1.3: Factor: (a) x2 − 4x+ 3 (b) x2 + 5x+ 4
(c) x2 − 5x+ 6 (d) 2x2 + 5x− 3

1.1.4: Factor: (a) x2 − 16 (b) 9− x2

(c) x2 + 2x− 3 (d) 3x2 + 18x+ 24

1.1.5: Factor: (a) 5x2 − 18x− 8 (b) x2 − 6x+ 9
(c) x2 − 2x+ 1 (d) x2 + x− 6

1.1.6: Factor and solve for x: (a) x2 − 10x− 24 = 0 (b) x2 + 10x− 24
(c) x2 + 11x+ 24 = 0 (d) x2 − x− 20 = 0

1.1.7: Rationalize the denominators of the following: (a)
√

3/2 (b) (4x+ 2)/
√
x+ y

(c) x√
2x+1

(d) y2−t
8



1.2. FUNCTIONS 11

1.1.8: (NECTA 2006) Simplify: (3 marks)

x

y
1
2 + x

1
2

+
x

y
1
2 − x

1
2

.

1.2 Functions

There are relations, and there are functions. Any equation involving two variables is a relation
between them. We are more concerned with functions.

Definition: A function is a relation that is many-to-one or one-to-one.

•NoteOn Notation •
We can write a function in several ways. The most common is

f(x) = 3x+ 1,

which we read ‘f of x is equal to 3 x plus 1.’ But we can also write this as

f : x 7→ 3x+ 1,

which is read ‘f maps x to 3 x plus 1.’ They mean the same thing. It is uncommon, but also
possible, to write the function as a set relation:

f = {(x, y) : y = 3x+ 1},

which we read ‘f is equal to the set of ordered pairs (x, y), such that y is equal to 3 x plus 1.’
When writing sets, the description of the set goes inside curly braces { }, and the colon, ‘:’, is
read ‘such that’.

1.2.1 Domain and Range

There are some things that you can never ever do. Never in this course. A partial list:

• Never divide by 0.

• Never take a logarithm of a negative number or 0.

• Never take a square root of a negative number.

The reason we don’t do these things is that they are not defined, so it is meaningless to do
them. Remembering these is very useful in finding the domain of functions.

Definition: The domain of a function is the set of all possible inputs.

This means that if a function f is a function of x, i.e. f(x), then the domain of f is the
set of all possible values of x. In most cases, for example f(x) = 2x + 1, the domain is ‘All
real numbers’, which means x can be anything. The rules listed above are useful for telling you
what values of x are not in the domain in certain cases. Sometimes the domain will be limited,
and you will be told explicitly what the domain is.

Ex 1: Find the domain of f(x) = x
x−1 .

Solution: Look at the rules list. There is one rule about division, one rule about logarithms,
and one rule about square roots. Which rules apply to our question? Well, we have no
logs and no roots, but we do divide. The rule says we cannot divide by 0. What do we
divide by? x−1. So, the rule says that x−1 6= 0. From there it’s easy to get that x 6= 1.
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So 1 is not in the domain, but everything else is. To write this in words, we can say ‘The
domain is all real numbers except 1.’ To write it in math:

Domain(f) = {x : x 6= 1}

z

Also note that a positive number raised to any power is always positive. 2x is always positive,
for any x whatsoever, because 2 is positive. In the same way, ex is always positive, because
e = 2.71828 . . . > 0.

Can you think of anything else that is always positive? Well, there are square roots, for one.
The notations

√
x is defined as positive. It’s true that if x2 = 9 then x can be either 3 or −3,

and that is why to correctly solve that equation, you should write x = ±
√

9 = ±3. But if the
± is not there, then it is positive. Also, absolute values, like |x|, are always positive.

These ‘always positive’ things are useful for finding the range of functions.

Definition: The range of a function is the set of all possible outputs.

The range is the set of all possible values of f(x) or of y, depending on how the function
is defined. Just like domain, often the range is ‘All real numbers.’ If we write y = 2x + 1
or f(x) = 2x + 1 then it is possible for y or f(x) to be anything, so the range of f is all real
numbers. However, if we see one of the ‘always positive’ things, then maybe the range is smaller.

Ex 2: Find the range of f if f(x) = x2 + 1.
Solution: What do we have here? We know that x2 ≥ 0, so we start with this and turn it into

x2 + 1, one step at a time.

x2 ≥ 0

x2 + 1 ≥ 0 + 1

x2 + 1 ≥ 1
f(x) ≥ 1

So the range of f is all real numbers greater than or equal to 1. To write it in math,kwa
kihisabati :

Range(f) = {y : y ≥ 1}

z

If the domain is limited or restricted, and is a small set, the best way to find the range is
just to find where each domain element is mapped. This set is your range.

Ex 3: Find the range of f : x 7→ 3x+ 1 if the domain is {−1, 0, 5, 10}.
Solution:

f(−1) = −2, f(0) = 1, f(5) = 16, f(10) = 31

Thus the range is {−2, 1, 16, 31}. z

1.2.2 Composition of Functions

Definition: Composition of functions is when you have one function of another function.
Different from multiplication, an example would be cos(x2), where you take the cosine of x
squared.

Ex 4: If f(x) = x+ 2 and g(x) = x2, find (a) f(g(x)) and (b) g(f(x)).



1.2. FUNCTIONS 13

Solution: This is not f(x) · g(x)! This is f of g of x. And this is how we do it:
(a)

f(g(x)) = g(x) + 2 Start by doing the outer function on the inner function.

= x2 + 2 Then substitute in the inner function.

(b)

g
(
f(xbigr) =

[
f(x)

]2 Same as above.

= [x+ 2]2

= x2 + 4x+ 4

z

Ex 5: If f(x) = cosx and g(x) = x2 + 1, find (a) f(g(x)) and (b) g(f(x)).
Solution: (a) f(g(x)) = cos(g(x)) = cos(x2 + 1).
(b) g(f(x)) = [f(x)]2 + 1 = cos2 x+ 1. z

1.2.3 Inverses

Definition: A function f(x) has an inverse, written f−1(x), which ‘un-does’ f , such that

f−1(f(x)) = x.

To find the inverse of a function algebraically there is an easy procedure:

1. Write f(x) = as y = (if necessary).

2. Switch x and y everywhere they occur.

3. Make y the subject.

4. Write f−1(x) for y (if Step 1 was necessary).

Ex 6: Find the inverse of f(x) = 4x− 8.
Solution:

y = 4x− 8 1. Write y for f(x).
x = 4y + 8 2. Switch x and y.

x− 8 = 4y 3. Make y the subject...
x

4
− 2 = y

f−1(x) =
x

4
− 2 4. Write f−1(x) for y.

z

Ex 7: Find the inverse of f(x) = x2.
Solution:

y = x2 1. Write y for f(x).

x = y2 2. Switch x and y.
±
√
x = y 3. Make y the subject.

f−1(x) = ±
√
x 4. Write f−1(x) for y.
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If you wonder about the ±, see part about square roots on page 12. z

Ex 8: Find the inverse of f(x) = 2x2 − 1.
Solution:

y = 2x2 − 1 1. Write y for f(x).

x = 2y2 − 1 2. Switch x and y.

x+ 1 = 2y2 3. Make y the subject...

(x+ 1)/2 = y2

±
√

x+ 1
2

= y

f−1(x) = ±
√

x+ 1
2

4. Write f−1(x) for y.

z

Geometrically, the inverse of a function is its reflection over the line y = x. And the switching
of y and x is the heart of it. If a point (a, b) is a point of f(x), then its reverse, (b, a), is a point
of the inverse. And for an inverse, the domain and range are switched. The domain of f−1(x)
is the range of f(x), and the range of f−1(x) is the domain of f(x).

x2 + 1 and it inverse, reflected over y = x

Figure 1.1: A function and its inverse: Reflections over y = x

Exercises

1.2.1: ate the domain and range for the following functions:
(a) f(x) = 1

x2 − 1 (b) g(x) = 4 cosx− 2 (c) h(x) = 12
x2+x−6

(d) f(x) = e2x − 3 (e) g(x) = |8x− 3| (f) h(x) =
√
x− 4

(t)

1.2.2: Find the inverses of the following functions:
(a) f(x) = 3x− 6 (b) f(x) = −

√
x+ 4 (c) y = (x+ 3)2

(d) y = x2 + 3 (e) f(x) = −x/5 + 3 (f) g(x) = −x2

1.2.3: Let f(x) = 3x + 1, g(x) = −x/2 − 4, and h(x) = x2. Find the following compositions:
(a) f ◦ g (b) g ◦ f (c) f ◦ h
(d) h ◦ f (e) g ◦ h (f) h ◦ g

1.2.4: (NECTA 2006)
(a) Find f−1(x) if f(x) = ex.

(b) Sketch the graph of y = ex and its inverse using the same xy-plane.
(c) What is your conclusion about the value of logeN if N ≤ 0? (3 marks)

1.2.5: (NECTA 2005) A function f is defined as:

f(x) =
{

xwhen 0 < x ≤ 1
x(x− 2)when 1 < x < 3

Sketch the graph of f(x). (6 marks)

1.2.6: (NECTA 2002) Let g be the function which is the set of all ordered pairs (x, y) such
that g(x) =

√
x(x− 2).
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(a) Find the domain and range of g.
(b) Draw a sketch of the graph of g. (6 marks)

1.3 Exponents and Logarithms

This is O-Level material that is never covered well enough in O-Level. You should especially
pay attention to the definition of the logarithm.

Most topics will be presented, rather than derived, but the rules of exponents and logarithms
are easy, and if you understand where they come from it will help you to remember them.

1.3.1 Exponents

Recall the meaning of exponents:

a2 = a · a, a3 = a · a · a, a4 = a · a · a · a, . . .
an = a · a · . . . · a︸ ︷︷ ︸

n

Understanding this, we can see that a2 · a3 = a · a︸︷︷︸
a2

· a · a · a︸ ︷︷ ︸
a3

= a5. So we have found a rule:

ax · ay = ax+y

What about (a2)3? Well, (a2)3 = (a2) · (a2) · (a20 = (a ·a) · (a ·a) · (a ·a) = a6. Thus another
rule:

(ax)y = axy

And what if we have more than just a? It’s still easy:

(bc)x = bc · bc · . . . · bc︸ ︷︷ ︸
x

= b · b . . . · b︸ ︷︷ ︸
x

· c · c . . . · c︸ ︷︷ ︸
x

= bx · cx.

The rule:
(bc)x = bxcx

Negative exponents are just the same as long as we define a−1 = 1
a .

Now we can see that a−2 = a−1 · a−1 = 1
a ·

1
a = 1

a2 , the rule is

a−x =
1
ax
.

What about a 0 exponent? Well, 0 = 1− 1 so a0 = a1 · a−1 = a · 1
a = 1. For any a,

a0 = 1.

Even 00 = 1!
Our last exponent rule is for non-integer exponents. How about a1/2? Once again we can

use the other rules to find the answer. Because a1/2 · a1/2 = a1/2+1/2 = a1, we can see that
a1/2 =

√
a. And, in general,

a1/n = n
√
a

when n is positive. If n is negative, then a1/n = 1/ |n|
√
a.

And those are the rules of exponents! They should be easier this time. The good thing about
learning things twice is that the second time you can understand better, easier, and faster.
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1.3.2 Logarithms

Definition:

y = logb x means x = by

Do not forget it. Know it. Use it. This much is nothing special, it is just the definition.
On the logarithmic side, b is called the base of the logarithm, so you can read it as ‘log base
b of x,’ or as ‘log of x base b.’ These two equations are the same, just in different forms. We
call y = logb x logarithmic form, and we call x = yb exponential form. It is easy to remember
because the base of the logarithm becomes the base of the exponent. We will start with some
examples to show how useful this definition is by itself, then we will find some rules that are
also helpful.

Ex 1: (a) Change logb x = z to exponential form.
(b) Change 25 = 32 to logarithmic form.
Solution: (a) Using the definition, bz = x.
(b) By definition, log2 32 = 5. z

Ex 2: 5log5 π =?
Solution: Using just the definition, let y = log5π. Do not be scared to call part of an equation
by a new name. Now write y = log5 π in exponential form: 5y = π. But what is y? Again, we
write y = log5 π. But 5y = π. Substituting in for y, we get that 5log5 π = π. And this is exactly
the answer we are looking for. z

Ex 3: 8log8 2 =?
Solution: Using the definition, if we let y = log8 2 then, changing to exponential form, 8y = 2.
Therefore 8log8 2 = 8y = 2. z

Nice and easy! These first 2 examples are almost the same, so let’s write it in variables now.

blogb x = x.

A description in words is that the number logb x is the power to which you can raise b to get x.
There are just two constraints: both b and x must be greater than 0. Neither b nor x can be 0
or negative. Now we can go even faster:

Ex 4: 23log23 30 =?
Solution: 23log23 30 = 30 z

It is tedious to always write out a log’s base, so for 2 especially common cases we use
abbreviations:
•NoteOn Notation •
If the base is 10, we just leave it off, thus log(x) = log10(x). Logarithms base e are called
‘natural logarithms’ and written like this: ln(x) = loge(x).

y = lnx means y = ex

Ex 5: eln 8.24 =?
Solution: eln 8.24 = 8.24. Why? Because blogb x = x, and ln 8.24 = loge 8.24. z

And how about logb b? We know that blogb b = b, so it must be that

logb b = 1.
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Also, let’s look at logb bx = y. Switching to exponential form, by = bx. So of course, x = y.
Thus logb bx = x.

Now let’s find some more general rules. logb 1 =? From our conclusion above, we know that
blogb 1 = 1. Because we know that b0 = 1 (remember the section on exponents?), this shows
that logb 1 = 0 for any b > 0.

Now, let’s bring is some other operations. What if bx = K and by = L. Switching to
logarithmic form, x = logbK and y = logb L. Also, if we multiply and use exponent rules, we
can say that KL = bxby = bx+y. Therefore,

logb(KL) = logb(b
xby) = logb(b

x+y) = x+ y

but logb(b
x) = x and logb(b

y) = y

so logb(b
xby) = x+ y = logb(b

x) + logb(b
y)

thus : logb(KL) = logb(K) + logb(L)

Also related is that logb(An) = logbA+ logbA+ · · ·+ logbA︸ ︷︷ ︸
n

so logb(An) = n logbA. In the

same manner it is easy to show that

logb(A/C) = logbA− logbC

and that
logbA

−1 = − logbA.

Logarithms are also used for simplifying complicated products and quotients, or if there is
an unwanted exponent.

Ex 6: Simplify the following:

100 =
(x2 − 3)4(x+ 1)8

(x− 1)2

Solution: We begin by applying logs to both sides.

log 100 = log
(x2 − 3)4(x+ 1)8

(x− 1)2

2 = log(x2 − 3)4 + log(x+ 1)8 − log(x− 1)2 Now we can use the logarithm rules to simplify.

2 = 4 log(x2 − 3) + 8 log(x+ 1)− 2 log(x− 1)

And that is far enough. Basi. z

Ex 7: The equation for radioactive decay is N = Noe
−λt. Make t the subject.

Solution: We begin taking logs of both sides. Because there is an e we will use natural
logarithms.

lnN = ln
(
Noe

−λt)
lnN = lnNo + ln e−λt

lnN = lnNo +−λt ln e
lnN = lnNo − λt

λt = lnNo − lnNλt = ln
( No

N

)
t =

ln
(
No
N

)
λ
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z

The last formula for logarithms we will not derive, just present. If you are interested in the
derivation, please do ask your teacher or find a bigger textbook (or even try it yourself!), it’s
not too difficult. But here is the Change of Base Formula:

logb1 x =
logb2 x
logb2 b1

or logb2(b1) · logb1(x) = logb2(x)

Ex 8: Change log16 123 to logarithm base 4.

Solution: Using the change of base formula:

log16 123 =
log4 123
log4 16

And, to simplify a bit, 16 = 42 so log4 16 = log4 42 = 2 · log4 4 = 2 · 1 = 2. Therefore
log16 123 = log4 123

2 . z

Usually, if you have a log of a strange base, you will want to change it either to base 10
or base e, because those are the logs that your calculator can do. Look for the LOG and LN
buttons on your calculator, learn how to use them. Also find the ex button. On some calculators
it will be labeled EXP.

Ex 9: Change (a) log7 6 and (b) log11 3 to both base 10 and base e.

Solution: (a) First let’s do base 10. Just apply the change of base formula, with b1 = 7,
b2 = 10, and x = 7.

log7 6 =
log 6
log 7

.

For base e, it’s just the same.

log7 6 =
ln 6
ln 7

And, these do not contradict each other, if you use a calculator you will find that

log7 6 =
log 6
log 7

=
ln 6
ln 7

= 0.920782221

(b) Same as part (a):

log11 3 =
log 3
log 11

=
ln 3
ln 11

= 0.45815691

z

Logs are strange. We have seen that log(ab) = log a+ log b, but it does not distribute! This
means that if y = a+ b, then

log y = log(a+ b) 6= log a+ log b.

This is another common mistake that is so easy not to make. Do not lose points on your NECTA
exam for something so silly. As a quick reference, the logarithm rules are summarized at the
end of the chapter on page 31.
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Exercises

1.3.1: Write the following in logarithmic form:
(a) x = by (b) x = 24 (c) 8 = 2n

(d) π = ex (e) a = 10z (f) ab = (xy)n+1

(g) 4 = 22 (h) 1024 = 210 (i) b0 = 1

1.3.2: Write the following in exponential form:
(a) log2 4 = 2 (b) logb c = 8 (c) ln 2.9 = 1.06471
(d) ln 2.71828 = 1 (e) log 4 = x (f) logg(ab) = 2

1.3.3: You should also be proficient at using a calculator to take logarithms. Use a calculator
(or your brain in some cases, if you can) to compute the following to 3 decimal places. Look
for patterns. What characterizes logarithms of numbers less than the base?
(a) log 5.286 (b) log 0.321 (c) log 10000
(d) ln 1 (e) ln

(
1
2

)
(f) ln 2

1.3.4: Solve for x:
(a) 2 log5 x = log5 18− log5 2 (b) log4(x− 1) + log4(x+ 2) = 1
(c) log4 x− log4(2x− 1) = 1 (d) 3 log7 2 = 2 log7 3 + log7 x

1.3.5: Make x the subject: (a) I = Ioe
−µx (b) 4y2 = 102x

(c) A = Peix (d) 42 = 35 · 6x

1.3.6: Expand by taking natural logs of both sides.

(a) y =
(x2 − 3)4(x3 − 1)8

(x2 + 2x+ 1)6
(b) y =

sin4(x) · cos3(x) · e2x

(x3 − 1)3/2

1.3.7: Solve for x:
(a) log3

√
x =

√
log3 x (b) x

√
log x = 108 (c) log2(log2 x) = 3

1.3.8: Change the following to natural logs (ln):
(a) log 82 (b) log3 9
(c) log2 256 (d) logb x

1.3.9: Find the domain and range for the following functions:
(a) f(x) = 2

x−5 (b) f(x) = 2
x2−4

(c) f(x) = x4 + 5 (d) f(x) =
√
x− 2

1.3.10: (NECTA 2008) Find without using tables (or calculators): (2 marks)

log 3125− log 5
log 25− log 5

1.3.11: (NECTA 2008) Find the minimum natural number N which satisfies the inequality
0.4N < 0.001. (4 marks)

1.3.12: (NECTA 2008) (a) Evaluate without using tables or calculators:

log10

(
1
3

+
1
4

)
+ 2 log10 2 + log10

(
3
7

)
.

(b) Given that log10 2 = 0.3010 and log10 3 = 0.4771, find the values of:
(i) log10 12.
(ii) log10 5. (6 marks)

1.3.13: (NECTA 2006) Solve for the real number x if log10 x = log5 2x. (3 marks)

1.3.14: (NECTA 2005) Solve for x: 4 loga
√
x− loga 27x = logax

−2. (3 marks)
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1.3.15: (NECTA 2005) Find y in terms of x: 2 ln y − 3 lnx2 = ln
√
x+ lnx. (2 marks)

1.3.16: (NECTA 2003) Solve for x in the equation (logx 3)2 + 3 logx 3− 4 = 0. (2 marks)

1.3.17: (NECTA 2003) Simplify

27n+2 − 6× 33n+3

3n × 9n+2

(2 marks)

1.3.18: (NECTA 2002) Use common logarithms to find the value of the following:

(a)
(7.04)2

(31.7)
√

1.09

(b) (115)1/2 + 35.22/3

(Note: It is not apparent why logs are necessary. For part (a) you could use logs and a Four-
Figure Table to approximate. For part (b), because it is addition, logarithms don’t help. You
are better off just evaluating with a calculator.) (6 marks)

1.3.19: (NECTA 2002) Solve the following equations:

(a) logx 3 + logx 27 = 2
(b) log3 x+ 3 logx 3 = 4

(6 marks)

1.4 Coordinate Geometry

Cartesian Coordinates are used very often for describing functions: lines, parabolas, etc. They
are named after a French mathematician and philosopher, Rene Descartes. A point, called
the origin, is picked, and then we count from the origin a horizontal distance x and a vertical
distance y. Any point is called by its horizontal and vertical distances from the origin, denoted
(x, y).

A function or a relation is an equation or description of a set of points. A straight line, like
y = 2x+ 3 is a relation between y and x, and the line is all the points for which y = 2x+ 3 is
true.

1.4.1 Slope

Definition: The slope of a line, usually called m is a measure of how steep it is. It is defined
as the ratio of vertical distance over horizontal distance between 2 point on the line, often called
‘rise over run’.

m =
y2 − y1

x2 − x1

Functions of the form y = mx + b are straight lines. They have constant slope, m, and b
is the y-intercept, the y-value when x is 0. This way of writing the equation, y = mx + b, is
called slope-intercept form, because to write it you must know the slope and the y-intercept of
the line.

If the slope is 0, then the line is horizontal. If the slope is undefined, then the line is
vertical. Vertical lines are written x = c, where c is a constant. This slope formula is only
good for straight lines. In Chapter 2 you will learn how to find slope for other functions,
like parabolas. There are other ways to write a straight line. Perhaps the easiest way, called
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point-slope form says that the equation of a line with slope m passing through a point (xo, yo)
is

y − yo = m(x− xo).

Point-slope form is nice because if you know slope and any other point, you can write the
equation. It works because for any other point on the line, (x, y), the slope between that point
and the point you know, (x0, y0) is

m =
y − yo
x− xo

⇒ y − yo = m(x− xo).

Ex 1: Write the equation for the line of slope 3 passing through the point (8, 4) (a) in point-slope
form, (b) in slope-intercept form, and (c) in the form y +Ax+B = 0.
Solution:

(a) For point-slope form, it is too easy. y − 4 = 3(x− 8).
(b) For slope-intercept form, we know it will be y = 3x+ b, we just need to find b. But,
we do know that (8, 4) is point on the line, so we substitute these values in and solve for
b:

y = 3x+ b

4 = 3 · 8 + b

4− 24 = b

−20 = b

So, in slope-intercept form, y = 3x− 20.
Another way to find slope-intercept form is to take the point-slope form from (a) and make y
the subject:

y − 4 = 3(x− 8) From part (a) above.
y − 4 = 3x− 24

y = 3x− 20

(c) To find this last form, we just take the slope-intercept form and put everything on one side:

y = 3x− 20
y − 3x+ 20 = 0

z

The downside to point-slope form is that for every point on the line, you can write an
equation for the line that looks different, but is really the same as all the others. In slope-
intercept form, because the line has only 1 slope and only 1 y-intercept, there is only 1 equation,
it is unique.

Two lines with the same slope are parallel, they either are the same at every point, or they
never intersect. All other lines will intersect at exactly one point. You can find the point of
intersection by setting the y’s equal to each other and solving. (Or any method for simultaneous
linear equations.)

If two lines have slope m1 and m2, and m1 · m2 = −1, then the lines are perpendicular.
‘Normal’ is another word that, when used in maths, also means perpendicular.

Ex 2: What is the slope of a line normal to the line y = 4x− 18?
Solution: The slope of our first line is m1 = 4. We need to find a slope m2 such that
m1 ·m2 = −1, or −1/m1 = m2, so m2 = −1/4. z
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1.4.2 The Pythagorean Theorem

The Pythagorean Theorem is extremely useful in basic geometry and many other problems.
This section has 2 goals: to teach you a very easy proof of the theorem, and then we will see
how it becomes the distance formula.

Theorem (Pythagorean Theorem). If a right triangle has sides of length a, b, and c, where c
is the hypotenuse, then

a2 + b2 = c2.

Proof: Consider a square of side-length a + b, made from triangles, as pictured: What is

Pythagorean Proof Picture

the area of the square? There are two good ways to calculate the area. The first is just the
normal formula for the area of a square, A = (a + b)2. The second way is to add up the area
of all the small shapes. There are 4 triangles of area A∆ = 1

2ab, and there is one square of
side-length c, A� = c2, so the area of the whole figure is A = 4 · 1

2ab + c2. These are just two
different methods of calculating the same thing, so they must be equal. A = A!

(a+ b)2 = 4 · 1
2
ab+ c2

a2 + 2ab+ b2 =
4
2
ab+ c2

a2 + 2ab+ b2 − 2ab = 2ab+ c2 − 2ab

a2 + b2 = c2

�

1.4.3 Distance

We use the Pythagorean Theorem to tell us the direct straight-line distance between two points.
If there are two points in the plane, (x1, y1) and (x2, y2), then the straight line between them
makes the hypotenuse of a right triangle. The base of the triangle is the horizontal distance
between them, x2 − x1, and the height of the triangle is the vertical distance, y2 − y1. So, by
the Pythagorean Theorem, the distance between these two points is

d =
√

(x2 − x1)2 + (y2 − y1)2.

This is called the Distance Formula.

Ex 3: Find the distance between (−1, 3) and (5, 1), and find the point that is halfway between
them.
Solution: To find the distance between them, we just use the formula above:

d =
√

(5−−1)2 + (1− 3)2 =
√

62 + (−2)2 =
√

36 + 4 = 6.325

The point that is halfway between them has an x-coordinate halfway between -1 and
5, and a y-coordinate halfway between 3 and 1. To find these halfway values, we just
average:

x =
−1 + 5

2
= 2 y =

3 + 1
2

= 2

So the midpoint, the point halfway between them, is (2, 2). z

A couple more useful definitions:
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Definition: The midpoint of a line segment, or the midpoint between two points, is the point
that is halfway between the ends of the line segment, or halfway between the two points.

The midpoint can be found by averaging the x-coordinates and averaging the y-coordinates.
The mid point of (x1, y1) and (x2, y2) is given by:

( x1 + x2

2
,
y1 + y2

2
)

Definition: The perpendicular bisector of a line segment is the line that is perpendicular to
the line segment and passes through the midpoint of the line segment.

Ex 4: Find the perpendicular bisector of the line segment connecting points (−3,−2) and
(−9, 2).
Solution: To start, let’s find the midpoint of this line segment.

x =
−3− 9

2
= −6 y =

−2 + 2
2

= 0

The midpoint is (−6, 0). Next, we should find the slope of the line segment.

m1 =
y2 − y1

x2 − x1
=

2−−2
−9−−3

=
4
−6

= −2/3

The slope of the line segment m1 = −2/3. The line we are looking for is perpendicular
to the segment, so that means it has slope m2 such that m1 ·m2 = −1. Thus m2 = 3/2.
Now we have a slope, 3/2, and a point, (−6, 0). Thus an equation for the perpendicular
bisector, in point-slope form, is

y =
3
2
· (x+ 6).

z

1.4.4 Equation of a Circle

What is the equation for a circle? To answer that question, ask another: What is a circle?

Definition: A circle is the set of all points a certain distance, called radius, from one point,
called the center.

Let’s try to write an equation for a circle centered at the origin. We need an equation for
all points that are distance r from (0, 0). What is the distance from a point (x, y) to (0, 0)?
Remembering the distance formula, our radius is r =

√
(x− 0)2 + (y − 0)2 =

√
x2 + y2. Thus

the equation for a circle centered at the origin is r2 = x2 + y2. We will use this again later.
That is all well and good for a circle centered at the origin, but what if we want a different

center, a certain point (xo, yo)? We have to ask the same question: what is the distance from
any point (x, y) to our center, (xo, yo)? The answer is about the same, this distance, the radius,
is r =

√
(x− xo)2 + (y − yo)2, so the genera equation for a circle of radius r with center at

(xo, yo) is given by
r2 = (x− xo)2 + (y − yo)2.

Exercises

1.4.1: (NECTA 2008) (a) A, B, and C are three points such that B is the midpoint of AC.
Given that A is (−1, 6) and B is (2, 4), find the coordinates of C.
(b) Determine the slope of the line perpendicular to the line segment AC. (2.5 marks)
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1.4.2: (NECTA 2008) (a) Show, by using Pythagoras’ theorem, that the points A(1, 6),
B(−1, 4), and C(2, 1) form three vertices of a right-angled triangle.
(b) Find the equation of the perpendicular bisector to the line segment BC in (a) above.
(3.5 marks)

1.4.3: (NECTA 2005) The equations of two straight lines L1 and L2 are 5x − 8y − 80 = 0
and 8x+ 5y − 128 = 0, respectively. Show that L1 and L2 are perpendicular. (2 marks)

1.4.4: (NECTA 2005) The points A(p, q) and B(p− 1, q + 2) lie on the line 2x− y + 3 = 0.
Find the values of p and q. (2 marks)

1.4.5: (NECTA 2005) The points P (4,−3), Q(−3, 4), R(−2, 7), and S are the vertices of a
parallelogram. With the help of the coordinates of the midpoint of the diagonal PR, find the
coordinates of point S. (2 marks)

1.4.6: (NECTA 2003) A and B are two points whose coordinates are (2, 1) and (6, 5), respec-
tively. Find the equation of the line meeting AB perpendicularly at its midpoint. (2 marks)

1.4.7: (NECTA 2003) Given the points A(2,−4) and B(−4, 2), find the equation of a line
which is a perpendicular bisector of AB. (2 marks)

1.4.8: (NECTA 2002) Find the equations of the straight lines which pass through the centre
of the circle x2 + y2 − 4x− 6y − 5 = 0 and at the points where the given circle cuts the x-axis
(each line at one point). (6 marks)

1.4.9: (NECTA 2001) Find the equation of a circle which circumscribes the triangle with
vertices (1, 0), (2, 1)) and (0, 2). (4 marks)

1.4.10: (NECTA 2000) Find the centre and diameter of the circle x2 + y2− 4x+ 6y− 3 = 0.
(2 marks)

1.4.11: (NECTA 2000) Find the perpendicular distance from the line 4y = 3x − 4 to the
origin. (4 marks)

1.5 Trigonometry

This material is summarized at the end of the chapter on page 31.
We start with some simple word definitions. Adjacent means next to, kanda ya, au ya jirani.

Opposite means away from, on the other side, mkabala. We use these as a memory aid for the
basic trigonometric functions. Imagine a right triangle with angle θ and sides a adjacent to θ,
o opposite from θ, and h the hypotenuse as in the figure We define the trigonometric ratios as

Picture of a Right Triangle aoh

Figure 1.2: Right Triangle aoh

follows:
cos θ = a/h sin θ = o/h tan θ = cos θ/ sin θ = o/h

A story to remember this:

There once was a math student studying trigonometry. He was walking home from
school, and he was very confused because he had just learned all about sine, cosine,
and tangent. He was thinking so hard to remember their definitions, that he did
not look where he was going, so he hit his toe very hard on a big rock.
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‘Ouch!’ he yelled, and he ran to his neighbor, who is also a doctor. The doctor
wanted to tell him that he should ‘soak his toe’ in some warm water and it would
feel better. But this doctor came from a different country, so he spoke in a strange
accent. Thus, when the doctor tried to say ‘Soak the toe,’ what he actually said was
‘Soh cah toa.’

The student thought for a moment, and then said ‘Aha! I know how to remember
trigonometry!’ He forgot all about his hurt toe because he was so happy. ‘Thank
you so much, doctor! Because of you I will surely get Division 1 on my exams!’

The key is in what the doctor said. ‘Soh’ means sin = o/h, ‘cah’ means cos = a/h, and ‘toa’
means tan = o/a. So if you have trouble remembering, just think of ‘soh cah toa.’

A common mistake is to forget that sinx or cosx is a function. By itself, cos has no meaning.
You must always have cosine of something, be it x or r or θ or π or Tanzania. cosx, fine,
sin($), sure, tan(Tanzania), great! But just cos by itself is very bad.

While we are defining things, we should also include the other 3 trigonometric functions,
secant (sec), cosecant (csc), and cotangent (cot). They are defined in terms of the original three:

sec θ =
1

cos θ
csc θ =

1
sec θ

cot θ =
1

tan θ
=

cos θ
sin θ

(Note: Sometimes, cscx is written as cosecx.)

1.5.1 Radians

Definition: Radians are the SI unit for measuring angles. Radians are defined so that if an
angle is θ radians, then the length of the arc produced is r · θ, where r is the radius. In a full
circle there are 2π radians, because the circumference is 2πr. Therefore,

2π rad = 360◦.

How Radians are Defined

Figure 1.3: Definition of Radian

For a general circle of radius r, the arc length s of a piece of the circle of angle θ is given as

s = rθ if θ is in radians,

s =
2πr
360
· θ if θ is in degrees.

Also nice is that ‘radians’ is not actually a unit, it is just a ratio of lengths (s/r). Most angles
in radians will not have ‘rad’ explicitly written. If an angle has no degree sign (◦), then it is in
radians. Using the equality above, you can convert from radians to degrees and back again just
like any other conversion.

Ex 1: Convert the following from radians to degrees or from degrees to radians:
(a) θ = 60◦

(b) φ = 4π
(c) α = 180◦

(d) β = 3π/2
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Solution:

(a) θ = 60◦
2π

360◦
=

2π
6

=
π

3

(b) φ = 4π
360◦

2π
= 2 · 360◦ = 720◦

(c) α = 180◦
2π

360◦
=

2π
2

= π

(d) β =
3π
2
· 360◦

2π
=

3
4
· 360◦ = 270◦

z

1.5.2 Laws of Sines and Cosines

For any triangle where the sides abc are opposite to the angles ABC, the Law of Sines says that

Law of Sines:
a

sinA
=

b

sinB
=

c

sinC

and the Law of Cosines says:

Law of Cosines: a2 = b2 + c2 − 2bc cosA

The proofs of the Law of Sines and Law of Cosines are not here, but they are not too difficult.
Try to prove the Law of Sines, maybe you are able!

Triangle ABC with sides abc

Figure 1.4: A generic triangle.

Exercises

1.5.1: (NECTA 2005) Solve the equation 4 cos θ − 3 sec θ = 2 tan θ for −180◦ ≤ θ ≤ 180◦.
(3 marks)

1.5.2: (NECTA 2005) Solve the equation cos 40◦ + x) = sin(2x − 10◦) when 0◦ < x < 90◦.
(3 marks)

1.5.3: (NECTA 2002) Eliminate θ from the following: (2.5 marks)

x = cos 2θ + 1
y = sin θ + 1

1.5.4: (NECTA 2002) Solve the equation sin 2θ−sin θ = 0 for θ between 0◦ and 180◦ inclusive.
(3.5 marks)

1.5.5: (NECTA 2001) Eliminate x from a sinx = b and tanx = c. (2 marks)

1.5.6: (NECTA 2001) Solve the following equation for 0◦ < x < 360◦: (2 marks)

sin 2x+ cosx = 0

1.5.7: (NECTA 2000) Prove that (2 marks)

2 cos2A− 1 =
1− tan2A

1 + tan2A
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1.5.8: (NECTA 2000)
(a) Find a formula for sin 3A in terms of sinA.
(b) Using the formula obtained in (a) above, find the exact value of 6 sin 50◦ − 8 sin3 50◦.
(4 marks)

1.6 The Unit Circle

Unit Circle. What does it mean? You know what a circle is, what is the exact meaning of the
word ’unit‘? Think of unity. Unity means umoja, and unit just means moja, 1. Just like in
uniform (everyone wears one kind of clothes), unilateral (one side), unicycle (a bicycle with only
one wheel), and unicorn (a fantasy horse with a single horn). So the unit circle is just a regular
circle of radius 1. But from such a simple form we can draw some very important conclusions.

Remembering back to Section 1.4, the equation for a circle of radius 1 centered at the origin
is just x2 + y2 = 1.

Picture of the Basic Unit Circle

Figure 1.5: The Unit Circle

Check out this picture of the unit circle. The first thing to notice is that the points (1, 1),
(−1, 1), (−1,−1), and (1,−1) are not on the circle. Let’s look at a point that is on the circle.
How about this point (x, y) where the line connecting the point to the origin makes an angle
θ with the x-axis. How can we find out what x and y are in terms of θ? Sine and cosine! In
terms of θ and radius r, x = r cos θ and y = r sin θ. But we know that r = 1 because it’s a unit
circle! So, for any point on the circle, the coordinates are given by

(x, y) = (cos θ, sin θ)

where θ is the angle made with the x axis. In other words, for the unit circle cos θ correspond to
x which is horizontal distance from (0, 0), and sin θ corresponds to y which is vertical distance
from (0, 0).

Note: If you need more review about the basic trigonometric functions, look at the previous
section for details or, for a summary on page 31.

This works for all values of θ. If θ is positive, you move anticlockwise from the x axis, if θ is
negative, you move clockwise. If θ > 360◦ = 2π radians, then you go around once and keep on
going around again. Thus the unit circle can be used like a complete graph of cos θ and of sin θ.
If you want cos θ, just look at the x coordinate. If you want sin θ, just look at y. A useful fact
is that the values of cos θ and sin θ are always in between -1 and 1. You can see it on the unit
circle because the maximum and minimum values for x and y are 1 and -1. So we can write

−1 ≤ sin θ ≤ 1 − 1 ≤ cos θ ≤ 1,

Which is nice. Let’s see what else we can find. What did we start with, what’s the equation of
this circle? x2 + y2 = 1. And x = cos θ, and y = sin θ. So what happens if we substitute in for
x and y? We get The Most Important Identity Ever:

cos2θ + sin2 θ = 1
This identity is used all the time. Also, think about some angle θ along with −θ. Starting at
the x-axis, if you go up by some angle and also down by the same angle, the x coordinates are
the same, but the y coordinates are opposite. This means that

cos(−θ) = cos θ and sin(−θ) = − sin θ.
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The Unit Circle also can tell us about radians, which is another unit for measuring angles.
Radians are better than degrees in almost every way; their one downside is that you aren’t
familiar with them already. What is the perimeter of the Unit Circle? Probably you remember
the formula for perimeter, C = 2πr. Here, r = 1 so the perimeter is 2π. And how many radians
are in a full circle? 2π!

As we saw in the previous previous section, if θ is in radians, the arc-length s of a section
of angle θ of a circle of radius r is given by s = rθ. For the unit circle, r = 1 so s = θ!

A very easy thing that you can do to enable yourself to do problems much faster is to
memorize the sines and cosines of all the basic angles, both in radians and degrees. Basic angles
are the multiples of π/6 and π/4 radians, (30◦ and 45◦, respectively). If you completely know
the full unit circle, as pictured, then you will be able to do many problems quickly in your head,
instead of slowly with a calculator.

Picture of the Complete Unit Circle

Figure 1.6: The Complete Unit Circle

1.6.1 Trigonometric Identities and Proofs

A complete list of good trigonometric identities is on page 31. As a student of BAM, you should
be able to use these identities to prove other identities. However, about 75% of the time, the
only identity you need to know is cos2 θ + sin2 θ = 1.

Ex 1: Prove that csc2 θ − cot2 θ = 1
Solution: We’ll start with

cos2 θ + sin2 θ = 1 We need a cot2 θ, which is cos2 θ/ sin2 θ,

cos2 θ

sin2 θ
+

sin2 θ

sin2 θ
=

1
sin2 θ

so we divide by sin2 θ

cot2 θ + 1 = csc2 θ

1 = csc2 θ − cot2 θ And we get a new identity!

z

For proofs, there is no procedure that will always work. My advice is this:

• Put everything thing in terms of sine and cosine. Tangents, secants, etc, just confuse
things.

• If you have two separate terms, combine them. Find a common denominator and put
fractions together.

• Expand! If you have (1 + sin θ)(cos θ − 1), multiply it out, see what it really is.

• Often, in a question that asks ‘Show that this = that,’ one side is more simple than the
other. Take the complicated side and try to make it like the simple side. It is better to
simplify something that is complex than to complicate something that is simple.

• Always remember: cos2 θ + sin2 θ = 1.

Ex 2: Simplify
sin θ

1 + cot2 θ
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Solution:

sin θ
1 + cot2 θ

=
sin θ

1 + cos2 θ
sin2 θ

Put everything in terms of sine and cosine.

=
sin θ

sin2 θ
sin2 θ

+ cos2 θ
sin2 θ

Find a common denominator...

=
sin θ

sin2 θ+cos2 θ
sin2 θ

and combine terms.

=
sin θ

1
sin2 θ

Remember sin2 θ + cos2 θ = 1,

= sin3 θ and there it is.

z

Ex 3: Eliminate θ from the equations

x = 3 cos θ, and y = 5 sin θ.

Solution: For this kind of question, you are given 2 equations with 3 variables, x, y, and
θ. The answer is 1 equation with 2 variables: just x and y. (Eliminate is like kimbiza
au fukuza. We want to chase away the θ.) To do this, we will use the best identity:
sin2 θ = cos2 θ = 1. But first we need to make sin θ and cos θ the subjects of the given
data.

x = 3 cos θ
cos θ = x/3 Now cos θ is the subject.

y = 5 sin θ
sin θ = y/5 And sin θ is the subject here.

cos2 θ + sin2 θ =
( x

3

)2
+
( y

5

)2
Substituting in,

1 =
x2

9
+

y2

25
And now we have 1 equation without θ.

z

Ex 4: If cos θ = −2/3 and θ is in quadrant III, find the exact value of sin θ without using a
calculator.
Solution: Without using a calculator! We need, once again, to use the best identity:

sin2 θ + cos2 θ = 1

sin2 θ = 1− cos2 θ

sin2 θ = 1−
( −2

3

)2

sin2 θ = 1− 4
9

sin2 θ =
5
9

sin θ = ±
√

5
3
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Now we use the other data, that θ is in quadrant III. If you look at the unit circle, you
will see that in quadrant III, both sine and cosine are negative. Therefore

sin θ =
−
√

5
3

z

Ex 5: Prove that (1− cosA)(1 + secA) = sinA tanA.
Solution:

(1− cosA)(1 + secA)
= (1− cosA)(1 + 1/ cosA) Start with the more complicated side;

put things in terms of sine and cosine.
= 1 + 1/ cosA− cosA− cosA/ cosA Expand.
= 1/ cosA− cosA+ 1− 1 Next, combine with a common denominator,

=
1

cosA
− cos2A

cosA

=
1− cos2A

cosA
And remember sin2A+ cos2A = 1,

=
sin2A

cosA
So sin2A = 1− cos2A

= sinA
sinA
cosA

= sinA tanA �

z

•NoteOn Notation •
We usually put a filled-in square � at the end of a proof to show that we are done. Sometimes
this is called a ‘booyah box’, as in ‘Booyah! I finished the proof!’

Ex 6: Solve the equation 2 sin2 θ − cos θ = 1 for values of θ between 0 and 2π.
Solution: First we will make the substitution sin2 θ = 1− cos2 θ:

2 sin2 θ − cos θ = 1

2(1− cos2 θ)− cos θ = 1

2− 2 cos2 θ − cos θ = 1

−2 cos2 θ − cos θ + 1 = 0 It’s a quadratic!
(−2 cos θ + 1)(cos θ + 1) = 0 Factoring the quadratic.

cos θ =
1
2

or cos θ = −1

Use the unit circle to find all possible values for θ. For cos θ = 1
2 , we find θ = π/3 or θ = 2π/3.

For cos θ = −1, θ = π. Thus θ = π/3, 2π/3, or π. z

Exercises

1.6.1: (NECTA 2005) Show that

sin 2θ
1 + cos 2θ

= tan θ
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(3 marks)

1.6.2: (NECTA 2005) Prove that (sin θ + csc θ)2 = sin2 θ + cot2 θ + 3. (3 marks)

1.6.3: (NECTA 2003) Solve for x in the equation tan 6x = 1√
3

where x is between −180◦ and
180◦. (2 marks)

1.7 Chapter Revision

Trigonometry

For a right triangle with legs o opposite angle θ, a adjacent to angle θ, and hypotenuse h,

cos θ =
a

h
sin θ =

o

h
tan θ =

o

a

sec θ =
1

cos θ
=
h

a
csc θ =

1
sin θ

=
h

o
cot θ =

1
tan θ

=
a

o

The Most Important Identity in the World:

sin2 x + cos2 x = 1
The identity above, as well as the next three, are all easily derived from the Unit Circle.

cos(−x) = cosx sin(−x) = − sinx tan(−x) = − tanx

Some less important, but still good, identities:

sin(α+ β) = sinα cosβ + cosα sinβ cos(α+ β) = cosα cosβ − sinα sinβ

sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ = 1− 2 sin2 θ = 2 cos2 θ − 1

sin2
(1

2
θ
)

=
1− cos θ

2
cos2

(1
2
θ
)

=
1 + cos θ

2

Logarithms

logb x = y ⇔ by = x lnx = y ⇔ ey = x

log(ab) = log a+ log b log(
a

b
) = log a− log b log(an) = n log a

Change of Base Formula :

logb2 b1 · logb1 x = logb2 x

logb1 x =
logb2 x
logb2 b1

Exercises

1.7.1: (NECTA 2008) Prove that csc 2θ + cot 2θ = cot θ. (2.5 marks)

1.7.2: (NECTA 2006) Find an equation (in the form Ax+By+C = 0) of the line which passes
through the point (2,−1) and through through the point of intersection of the line 3x−7+7 = 0
and 10x− 7y + 38 = 0. (3 marks)

1.7.3: (NECTA 2006) Find the equation of the perpendicular bisector of the line joining
points A(2,−3) and B(6, 5).
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1.7.4: (NECTA 2006) Using the same xy plane, sketch the graphs of f : x 7→ 5 − x and
g : x 7→ x, and hence calculate the area of the triangle enclosed by the two graphs and the
x-axis. (3 marks)

1.7.5: (NECTA 2006) Given that 2A+B = 45◦, show that:

tanB =
1− tan2A− 2 tanA
1− tan2A+ 2 tanA

.

Hence, find the value of tan(−15◦) without using a calculator or mathematical tables. Simplify
your answer, and rationalize the denominator. (6 marks)

1.7.6: (NECTA 2003) The straight line x − y − 6 = 0 cuts the curve y2 = 8x at P and Q.
Calculate the length of PQ. (2 marks)

1.7.7: (NECTA 2003) Show that

cos 2A
cosA+ sinA

= cosA− sinA

(2 marks)

1.7.8: (NECTA 2003) Simplify

x

y1/2 + x1/2
+

x

y1/2 − x1/2

(2 marks)

1.7.9: (NECTA 2003) Find the set of values of x such for which

4x+ 8
x− 1

> 3.

(3 marks)

1.7.10: (NECTA 2001) Find the set of values of x for which

2x+ 3
2x− 1

> 5.

(3 marks)



Chapter 2

Differential Calculus

Differentiation finds the exact rate of change of a function. The concept of a ‘derivative’,
‘gradient’, ‘slope’, ‘rate of change’, are all about the same. Finding the slope of a straight line is
easy because it is constant. The slope is the same at any two points on the line. But a function
just slightly more complicated, a parabola, has a slope that is different at every point. But with
derivatives, we can find what it is at any point. To find this exact slope, we will need to learn
limits, then we will learn to differentiate.

Derivatives are incredibly useful. You will take lots and lots of derivatives, you should
practice until you can do it quickly and easily. When beginning, show lots of work so that you
do not make mistakes, but with practice you will be able to skip some steps, doing them in your
head.

2.1 Limits

A limit is a description of what a function does as you look closer and closer to a point, without
ever looking at the point. A good example is ‘at infinity’. You can never put ∞ in an equation
and get an answer, but you can find out what a function does as you get close to infinity.

For example, what happens to the value of y as x approaches ∞ if y = 4− 1
x? We write

lim
x→∞

4− 1
x

and say ‘The limit of 4 − 1
x as x approaches infinity.’ Obviously, as x gets bigger and bigger

4 will remain as 4, but 1
x will get smaller and smaller, approaching 0. Thus we can say that

limx→∞ 4− 1
x = 4− 0 = 4, or that the limit of 4− 1

x as x approaches infinity is 4.
For limits, we never ‘arrive,’ we just approach. We get closer and closer. This is important

because it avoids problems like dividing by 0. But, also realize that the direction of approach
matters. In our first example, we were approaching infinity. Because it is impossible to be
greater than infinity, we were obviously approaching from below infinity. However, if we want
to approach something that is not infinite, like 0, then we can choose to approach from below
or from above. We denote these with a + to indicate coming from above or a − to indicate
coming from below. For example

lim
x→0+

1
x

is the limit of 1/x as x approaches 0 from above. So we think: when x is 1, 1/x is 1. Then x gets
closer to 0, say x = 1/2, then 1/x is 2. Then, if x = 1/100, even closer to 0, then 1/x = 100.
As x approaches closer and closer to 0, we can see 1/x getting very big, very positive. And you
can imagine, however big a number you can think of, there is some value for x such that 1/x is

33
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x 1/x
1 1

1/2 2
1/4 4

1/100 100
1/10000 100000

Table 2.1: As x gets close to 0, 1/x gets very big

even bigger, so 1/x is unbounded, its limit is infinity.

lim
x→0+

1
x

=∞

But what if we come from the other side of 0? If instead the values we pick for x are −1,
then −1/2,−1/4,−1/100000, then again 1/x will get very big, but it will be negative. Thus
the limit coming from below is negative infinity.

lim
x→0−

1
x

= −∞

Definition: The limit of a function f(x) at a point p is the value that f(x) approaches as x
approaches p. The left-hand limit denoted by limx→p− f(x) is the limit as x approaches p from
below, i.e. x < p. The right-hand limit denoted by limx→p+ f(x) is the limit as x approaches p
from above, i.e. x > p. The actual limit only exists if all of the following are true:

• limx→p− f(x), the left-hand limit, exists.

• limx→p+ f(x), the right-hand limit, exists.

• limx→p− f(x) = limx→p+ f(x), the left-hand limit equals the right-hand limit.

Otherwise the limit does not exist at p.

Some limits are easy and obvious. If a function is continuous at the place you are taking
the limit, then the limit is just the value of the function. Being continuous generally means you
can draw the graph without lifting your pencil from the paper. No holes, no infinities, just a
curved (or straight) line. In fact, the precise definition of continuous is that f(x) is continuous
at p if the limit of f(x) as x approaches p is f(p).

Ex 1: What is limx→3 x
3 − x2?

Solution: This is a nice easy one. x3 − x2 is just a polynomial, and polynomials are always
continuous. This means we can just substitute in 3 for x and get the answer.

lim
x→3

x3 − x2 = 33 − 32 = 27− 9 = 18

z

Ex 2: Find limx→3(x3 − x2)/(x+ 1).
Solution: This isn’t a polynomial, but it is just one polynomial divided by another. Here we

can try substitution, and as long as we don’t see a problem (like dividing by 0) we should
be fine.

lim
x→3

x3 − x2

x+ 1
=

33 − 32

3 + 1
=

18
4

= 4.5
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z

Limits work very nicely, you can add, subtract, multiply, divide, and take powers just like
normal. Unfortunately, if a function is not continuous at the place where you are taking the
limit, things are more complicated.

Ex 3: Find limx→1
x2+x−2
x2−x .

Solution: Notice what happens if we just try to substitute:

12 + 1− 2
12 − 1

=
0
0
,

which is undefined. But, bahati nzuri, if we factor, we can simplify some.

x2 + x− 2
x2 − x

=
(x− 1)(x+ 2)
x(x− 1)

=
x+ 2
x

for x 6= 1

Now we can take the limit!

lim
x→1

x2 + x− 2
x2 − x

= lim
x→1

x+ 2
x

=
1 + 2

1
= 3.

z

Exercises

Evaluate the following limits:
2.1.1: (a) limx→1 x

3 − x2 (b) limx→1
x3−x2

x−1

(c) limx→∞ x
3 − 11000000x2 (d) limx→−∞ x

3 + x2

2.1.2: (a) limy→0 1/y (b) limz→0 1/|z|
(c) limh→0

(x+h)2−x2

h (d) limt→0
(x+t)3−x3

t

2.1.3: (a) limx→0+

√
x (b) limx→−1+

3
√
x

(c) limx→0−
√
x (d) limx→−1−

3
√
x

2.2 Derivatives from First Principles

Most of this book is light on theory, but derivatives by definition are important to understand
where derivatives come from, and they tend to show up on NECTA exams, so don’t skip over
this section.

Now we will take our ideas of limits and apply them to slope. What we want to do is find
the exact slope at a point. Consider the parabola f(x) = x2. What is the slope at the point
(1, 1)? Our formula for slope, m = (y2 − y1)/(x2 − x1) is only good if we have 2 points. What
can we do to find the slope at a single point?

The answer is to take a limit. We will pick a point p on the parabola that is close to
(1, 1), and then move p closer and closer, taking the limit as the distance between p and (1, 1)
approaches 0. And the result of this limit will be the slope at (1, 1).

Let’s start with our point p being 0.5 away from x. Since x = 1, this means that p = 1.5.
And let’s give a name to our distance from x, something like h. So we are starting with h = 0.5.
If the x value of p is 1.5, then what is the y value? We know p is on the parabola f(x) = x2,
so the y value must be y = 1.52 = 2.25. Now, what’s the slope of the line connecting (1, 1) to
(1.5, 2.25)? Using the good old slope formula, we get

m =
2.25− 1
1.5− 1

=
1.25
.5

= 2.5.
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Okay, that’s a good start, now let’s look closer. If we move p even closer to (1, 1), say, maybe
at x = 1.25, so the horizontal distance h = 0.25 from p to (1, 1). Now our point is (1.25, 1.252).
Now

m =
1.252 − 1
1.25− 1

=
0.5625
.25

= 2.25.

Even better. We’re going to keep getting closer, but we need a better method. Let’s do
everything in terms of h, the distance from x. Our first point is always (1, 1). Our second point
is always

(
x+ h, (x+ h)2

)
. So that means that the slope we calculate is

m =
(x+ h)2 − x2

(x+ h)− x
=
x2 + 2xh+ h2 − x2

h
=

2xh+ h2

h
= 2x+ h.

And, since x = 1, and we are trying to make h as small as possible, when we approach h = 0,
we get m = limh→0 2x+ h = 2x. So, when x = 1, m = 2 · 1 + 0 = 2. So this is the exact slope,
or the derivative of y = x2 at the point (1, 1).

To write an exact definition, if we have a function f(x), and we want to know the slope, we
can calculate the slope of a straight line connecting the point (x, f(x)) with a point a distance
h away. This slope is

m =
f(x+ h)− f(x)

(x+ h)− x
=
f(x+ h)− f(x)

h
.

Then, to find the exact slope, rather than just an approximation, we take the limit as h ap-
proaches 0.

Definition: The derivative of f(x) is defined as

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

.

What we did above, finding the derivative at a certain point is fine, but it is so much better
to do it in general. Let’s see how:

Ex 1: Find the derivative of f(x) = x2.
Solution: By our definition,

d

dx
x2 = lim

h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

2xh+ h2

h

= lim
h→0

2x+ h = 2x.

Thus d
dxx

2 = 2x. Sweet! z

•NoteOn Notation •
There are a lot of ways to write derivatives. It’s because they are so useful. The shortest way to
write them was created by Newton. He used a tick mark, called a ‘prime’. Thus the derivative
of y is y′, read ‘y prime,’ the derivative of f(x) is f ′(x), read ‘f prime of x,’ etc. Newton’s
notation is very easy, but it has limitations. Mostly in that it doesn’t tell you which variable
you are differentiating with respect to. Sometimes a function will depend on more than one
variable, for example both time and distance, or both vertical and horizontal displacement.

Derivatives were created simultaneously by both Isaac Newton, working in England, and
Gottfried Leibnitz, working in Germany. Leibnitz created his own notation, called Leibnitz
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notation, which is more detailed. It is what we used in the example above. It starts with d
dx ,

which is called the differential operator, it tells you to take the derivative with respect to x
of what follows, just like cos tells you to take the cosine of what follows. But it’s flexible. If
you want to differentiate with respect to time, t, you write d

dt . So, the instruction ‘take the
derivative of y with respect to x’ is written d

dxy, which is read ‘d dx of y.’ Then, once the
derivative is taken, we write dy

dx , and say ‘dy dx,’ or maybe df
dt and say ‘df dt.’

Newton’s notation is short and easy, Leibnitz notation is longer and exact. The one thing
you must remember is that it is a notation, not a fraction, you cannon cancel the d’s. dy

dx 6=
y
x .

The d means an infinitely small change, so dy
dx really means ‘infinitely small change in y divided

by infinitely small change in x,’ which is exactly what our derivative is, by definition: slope,
but the change in x is infinitely small.

Ex 2: If y = x3 − 2x, find y′.
Solution: Here f(x) = y = x3 − 2x, so by definition

y′ = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)3 − 2(x+ h)− (x3 − 2x)
h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − 2x− 2h− x3 + 2x
h

= lim
h→0

3x2h+ 3xh2 + h3 − 2h
h

= lim
h→0

3x2 + 3xh+ h2 − 2

= 3x2 + 3x · 0 + 02 − 2

= 3x2 − 2

Thus y′ = 3x2 − 2. z

Ex 3: Find the derivative of f(x) = 1/x.
Solution:

f ′(x) = lim
h→0

1
x+h −

1
x

h

= lim
h→0

1
h

(
1

x+ h
− 1

x

)
We’ll start by factoring out 1/h,

= lim
h→0

1
h

(
x

x2 + xh
− x+ h

x2 + xh

)
Finding a common denominator,

= lim
h→0

1
h

(
x− (x+ h)
x2 + xh

)
Combining,

= lim
h→0

1
h

(
−h

x2 + xh

)
= lim

h→0

−1
x2 + xh

Canceling h from the front,

=
−1
x2

And evaluating the limit.

z

Be careful! Every time there is an x in f(x), when writing f(x+h), for every x, write x+h
instead.
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Ex 4: Find the derivative of f(x) =
√
x+ 3.

Solution:

f ′(x) = lim
h→0

√
x+ h+ 3− (

√
x+ 3)

h

= lim
h→0

√
x+ h−

√
x

h

Now we are going to rationalize the numerator. When you have square roots added or
subtracted, this trick works. It uses the fact that (a+ b)(a− b) = a2 − b2.

f ′(x) = lim
h→0

√
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

(x+ h)− x
h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

Canceling h,

=
1√

x+
√
x

Taking the limit

=
1

2
√
x

=
1
2
x−1/2

z

This is the method of taking derivatives by definition, or by first principles. For the rest
of this chapter we will learn faster ways of differentiating. But, never forget where derivatives
come from and what they mean: slope, gradient, rate of change. If a question says to find the
derivative ‘by definition’ or ‘from first principles,’ then you must use this method.

Exercises

Find the derivatives for the given functions from the definition:
2.2.1: f(x) = x2 − x

2.2.2: g(x) = x2 + x− 4

2.2.3: y =
√
x+ 1

2.2.4: f(x) = x3

2.2.5: h(x) = x3 − x2 + 5

2.2.6: (NECTA 2006) Given that f(x) = x2 − 1
2x + 3, find the value of f ′(x) from first

principles. (3 marks)

2.2.7: (NECTA 2003) Find f ′(x) from first principles, given that f(x) = x3 − 3x2 + x + 2.
(2 marks)

2.3 Derivatives of Polynomials

Okay, we’ve seen the complicated way to take derivatives. Now for the easy way. We’ll start
with the Power Rule.
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Power Rule :
d

dx

(
xn
)

= nxn−1

Ex 1: Differentiate the following:
(a) y = x5 (b) f(t) = t8 (c) g(x) = x8921 (d) y = x−1

Solution:
(a) y′ = 5x4

(b) f ′(t) = 8t7

(c) g′(x) = 8921x8920

(d) y′ = −x−2 z

Next we have the Constant Multiple Rule. For any constant c,

Constant Multiple Rule :
d

dx

[
cf(x)

]
= cf ′(x)

Ex 2: Differentiate the following:
(a) y = 3x5 (b) f(t) = −t8 (c) g(x) = πx8921 (d) y = cx−1

Solution:
(a) y′ = 3 · 5x4 = 15x4

(b) f ′(t) = −8t7

(c) g′(x) = π · 8921x8920

(d) y = cx−1 z

Addition/Subtraction Rule :
d

dx

[
f(x)± g(x)

]
= f ′(x)± g′(x)

Ex 3: Differentiate the following:
(a) y = x5 + x3 (b) f(t) = t8 − 2t (c) g(x) = x8921 + x486 − 3x2

Solution:
(a) y′ = 5x4 + 3x2

(b) f ′(t) = 8t7 − 2
(c) g′(x) = 8921x8920 + 486x485 − 6x z

These rules make taking derivatives much faster than always using limits. It is not very
difficult to prove these rules using limits and the definition of derivative. Basically, because
you can multiply limits by constants, or add and subtract limits, you can do the same with
derivatives.

The power rule is especially useful, it is good for any power, not just integers. It also shows
that the derivative of a constant is 0. Just think of x as x1, and 1 as x0, and

√
x as x1/2.

Ex 4: Differentiate the following: (a) y = x (b) y = 5 (c) y =
√
x (d) y = x−3

Solution:
(a) y′ = d

dx(x) = d
dx(x1) = 1 · x0 = 1

(b) y′ = d
dx(5) = d

dx(5 · 1) = d
dx(5 · x0) = 0 · 5x−1 = 0

(c) y′ = d
dx(
√
x) = d

dx(x1/2) = 1/2x−1/2

(d) y′ = −3x−4 z

And that gives us our last rule: the Constant Rule:
For any constant c,

Constant Rule :
d

dx

(
c
)

= 0
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When taking these derivatives, remember the meaning: slope, gradient, rate of change. A
common type of problem asks you to find the equation of a line tangent to a curve at a given
point. The way to do this is to differentiate to find the slope in general, then evaluate the
derivative at the given x to get the slope of the tangent line at that point. Then, you have the
slope of the line, and a point, so it is easy to write the equation for the line in point-slope form.

Ex 5: Find an equation for the line tangent to the curve y = x3 − 2x2 + 3 at the point (3, 12).
Solution: As explained, we start by differentiating:

y′ = 3x2 − 4x+ 0

Now we put the x value from our point into the derivative to find the slope at that point.
y′(3) = 2 · 32 − 4 · 3 = 18− 12 = 6. Basi! We have our point:(3, 12) and our slope, 6, so
in point-slope form our line is:

y − 12 = 6(x− 3).

z

Sometimes one derivative just isn’t enough. You can differentiate again and again. If you
differentiate twice, you get the second derivative, three times and you get the third derivative,
etc. In general these are called higher order derivatives.
•NoteOn Notation •
Higher order derivatives are written easily in Newton’s notations, if a function is y, then y′ is
the first derivative, y′′ is the second derivative, y′′′ is the third derivative...

For Leibnitz notation, higher order derivatives are written as follows:

d

dx
y =

dy

dx
First derivative,

d

dx

(
d

dx

(
y
))

=
d2y

dx2
Second derivative,

d

dx

(
d

dx

(
d

dx

(
y
)))

=
d3y

dx3
Third derivative.

This makes sense because the dx in the denominator is one part, and the d in the numerator is
one part, and there are many of these. But there is only one y, which is the reason that the y
is never squared or cubed.

The meaning of derivatives continues to be the same. If you have a function f(x), then
f ′(x), the first derivative, is the rate of change of f(x). Then, f ′′(x) is the rate of change of
f ′(x), and f ′′′(x) is the rate of change of f ′′(x). The best way to understand this is to think of
physics. If the position of a particle at time t is given by s(t), then s′(t) is the rate of change
of position, called velocity. The second derivative, s′′(t), is the rate of change of velocity, called
acceleration. So, in general, we can write that

s(t) = position,
s′(t) = v(t) = velocity,

s′′(t) = v′(t) = a(t) = acceleration,

and we can understand the second derivative as the ‘acceleration’ of the function.

Exercises

If you have trouble with something, try to write it in the form cxn. Remember that 1
xn = x−n,

and that n
√
x = x1/n.
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2.3.1: Find the following derivatives:
(a) f(x) = x3 + 1 (b) g(x) = 2x3 + 3x2

(c) f(x) = x2 + x2 (d) g(x) = 2x2

Notice that x2 + x2 in (c) is equal to 2x2 in (d). The answers are also the same.

2.3.2: Find the first and second derivatives of the following:
(a) y = x5 − 1

6x
3 + 12 (b) R(θ) = 5θ2 − 3θ

(c) f(x) = x11 − x+ 621 (d) s(t) = 3t− 6

2.3.3: Find an equation for the line tangent to the graph of the function at the given point.
(a) f(x) = x2 + 3 at (−1, 4) (b) f(x) = x3 − 2x at (2, 4)
(c) f(x) = (x+ 3)2 at (0, 9) (d) f(x) =

√
x at (4, 2)

2.3.4: Differentiate the following:
(a) f(x) = x

3
2 + 1 (b) g(x) = 1

x
(c) f(x) = 3

√
x (d) g(x) = x−4

2.3.5: Find all the points (x-values) where there is a horizontal tangent.
(a) f(x) = x2 − 4x+ 3 (b) g(x) = 1

3x
3 − 3x2 + 9x− 1

(c) f(x) = 1
3x

3 + 4x2 + 12x+ 30 (d) h(x) = 1/x

2.3.6: (NECTA 2005) Find the points on the curve y = x3 +3x2−6x−10 where the gradient
is 3. (3 marks)

2.4 Derivatives of Other Functions

A derivative is a demand. The great Professor Weiquing Gu created a story in her childhood
to remember derivatives. She says that a differential operator, d

dx is a tough guy going around
and fighting with functions. When d

dx meets a function, it hits the function and asks ‘What is
your derivative? Tell me your slope!’ But different functions respond differently to being hit.

A polynomial function is just normal. When you hit a polynomial it becomes weaker, in
degree. Thus xn becomes nxn − 1. For a polynomial, if you hit it enough, it will die, it will
become 0. If the power is negative, then it will just continue becoming more and more negative.
This is the power rule from the previous section.

Exponential functions, however, are very strong. When you hit an exponential function, ex,
it stays the same, still ex. You can hit it 1000 times, and it will still be ex. The function ex is
a a very strong man.

d

dx
ex = ex

This is one of the very special things about the number e. It shows up in many different
applications such as damped oscillations and radioactive decay (physics), rates of reactions
and pH balances (chemistry), concentration of medicine in blood (biology), and constantly
compounded interest (economics).

Then there are the trigonometric functions. Their graphs are like snakes, and the functions
are tricky like snakes. When you hit sin(x), it becomes cos(x), and then when you hit cos(x)
you get − sin(x). They are tricky like snakes, always dodging you.

d

dx
sin(x) = cos(x)

d

dx
cos(x) = − sin(x)

Then, there are logarithms. The natural logarithm is like an abused child. When you hit
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it, it is scared, and it hides under a table.

d

dx
lnx =

1
x

Logarithms of different bases (other than e) are a little bit more complicated, and you don’t
need to know them for BAM. And, just as before, all of these rules can be proved just from the
definition of derivative, but some of them are rather difficult. If you’re interested, look for a
bigger math book or ask your teacher, the proofs are difficult, but understandable.

We should also present the derivative for tangent:

d

dx
tanx = sec2 x,

where secx = 1/ cosx.
These rules by themselves are not difficult, and don’t forget about the Constant Multiple

and Addition/Subtraction rules, they all work together.

Ex 1: What is the derivative of y = 5ex?

Solution: By the constant multiple rule, y′ = 5ex. It doesn’t change at all! z

Ex 2: What is the derivative of f(x) = lnx+ 2 cosx− πx2?

Solution:

f ′(x) =
1
x
− 2 sinx− 2πx

z

And things work just the same with variables other than x.

Ex 3: Find the derivative of R(θ) = ln θ3 − θ−3.

Solution: Remember that ln(θ3) = 3 ln θ because of the rules of logarithms. Thus

R′(θ) = 3 · 1
θ

+ 3θ−4.

z

Exercises

Just apply the derivatives of these new functions along with the rules you already learned for
polynomials. Differentiate the following:

2.4.1: (a) f(x) = sinx+ 3x2 (b) g(x) = cosx− lnx
(c) h(x) = ex + 63x− 1 (d) X(t) = t−4 − ln t

2.4.2: (a) f(x) = tanx− cosx (b) g(x) = 4ex − 4x5

(c) h(x) = ln(x2) (d) R(θ) = sin θ − 4 cos θ

2.4.3: (a) f(x) = ex + 7 tanx (b) g(x) = 3x2 − 4/x+ lnx
(c) h(x) = sinx+ cosx+ tanx (d) F (r) = −q1q2

4πεor



2.5. PRODUCT AND QUOTIENT RULES 43

2.5 Product and Quotient Rules

The Product Rule and the Quotient Rule are used when two functions are multiplied or divided.
Good examples would be, if we say u = x2, and v = cosx, then we use the product rule to
differentiate u · v = x2 cosx, and the Quotient Rule is used to differentiate u/v = x2/ cosx.

Product Rule :
d

dx

(
u · v

)
= u · v′ + v · u′

In words, the derivative of the product of two functions is the first times the derivative of
the second, plus the second times the derivative of the first.

Ex 1: Find the derivative of y = x2 cosx.
Solution: If we let u = x2 and v = cosx, then y = uv. Then, by the Product Rule, y′ =

uv′ + vu′.

u = x2 v = cosx
u′ = 2x v′ = − sinx

y′ = uv′ + vu′

= x2(− sinx) + cosx(2x)

= 2x cosx− x2 sinx

z

Using the Quotient Rule is similar, but the rule is just a little longer.

Quotient Rule :
d

dx

( u
v

)
=

vu′ − uv′

v2

Ex 2: Find the derivative of f(x) = 3x2/ sinx.
Solution: Looking at the top and the bottom, u = 3x2 and v = sinx. Then we get

u = 3x2 v = sinx
u′ = 6x v′ = cosx

The quotient rule says that f ′(x) = vu′−uv′
v2

.

f ′(x) =
vu′ − uv′

v2

=
sinx · 6x− 3x2 cosx

sin2 x

=
6x sinx · −3x2 cosx

sin2 x

z

A good way to remember the Quotient Rule is in a song. We call the numerator ‘hi’, because
it is up high, and the denominator ‘lo’, because it is down low. And we put a ‘d’ in front of
something to show a derivative. Then,

d

dx

( hi
lo
)

=
lo dhi− hi dlo

lo lo

Or in words: The derivative of hi over lo is lo dhi minus hi dlo over lo lo. It is very
good to use this song because, for the Quotient Rule, order matters. There is a minus in the



44 CHAPTER 2. DIFFERENTIAL CALCULUS

numerator, and the first term must be lo dhi. With the Product Rule there is only addition and
multiplication, order does not matter. But in the Quotient Rule, because of the subtraction,
the order does matter.

Ex 3: Find the derivative of y = 4x3−2x
x2+1

Solution:

hi = u = 4x3 − 2x lo = v = x2 + 1

dhi = u′ = 12x2 − 2 dlo = v′ = 2x

And then ‘lo dhi - hi dlo over lo lo’:

y′ =
(x2 + 1)(12x2 − 2)− (4x3 − 2x)2x

(x2 + 1)2

=
(x2 + 1)(12x2 − 2)− 8x4 + 4x2

(x2 + 1)2

Of course it is possible to simplify more, but this is enough. Basi. z

Exercises

Find the derivatives using the Product Rule:
2.5.1: (a) u = 3x+ 4 (b) v = sinx

(c) y = (3x+ 4) sinx

2.5.2: (a) u = 8x3 − x2 + 1 (b) v = 2x2 − x
(c) f(x) = (8x3 − x2 + 1)(2x2 − x)

2.5.3: (a) g(x) = ex cosx (b) y = cosx sinx
(c) R = cos θ · tan θ (d) y = 5x−3 cosx

2.5.4: (a) y = 6x lnx (b) f(x) = (x3 + 3x− 1)(x3 + 3x− 1)
(c) g(x) = (x+ 3)(x− 3) (d) h(x) = ( 1

3 x
3 − 2x) tanx

2.5.5: Simplify these into a form such that you can use the product rule, then find the deriva-
tives.
(a) y = lnx2x (b) y = e(2x)
(c) y = sin(2θ)

Use the Quotient Rule to find differentiate the following:
2.5.6: (a) u = 2x2 (b) v = 3x+ 1

(c) y = 2x2

3x+1

2.5.7: (a) u = cos θ (b) v = sin θ
(c) y = cot θ

2.5.8: (a) f(x) = 5x3−2
x+1 (b) g(x) = lnx

x3

(c) y = x4−4
x2+2

(d) H = 2y2

ey

2.5.9: (a) Q = 1+
√
x

x2−1
(b) y = 3x+8

3x+8

(c) f(x) = ex

tanx (d) X(t) = x3+1
x3−1

2.5.10: Your answers for (a) and (b) should be the same.
(a) Use the Quotient Rule to differentiate y = 3x4−5x+1

x .
(b) Use the Product Rule to differentiate y = (3x4 − 5x+ 1) · x−1.
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2.5.11: Use u = sin θ and v = cos θ to prove that d
dθ (tan θ) = sec2 θ.

2.5.12: Use both rules together to find the derivatives:
(a) y = (x2+1)(2x3−x2)

2x−5 (b) y = 5xex

2x2−1
(c) y = 3x2

cosx · lnx

2.5.13: (NECTA 2008) Find the gradient of the curve

f(x) =
4x2 + x− 1

2x
when x = 1. (2 marks)

2.6 The Chain Rule

The Chain Rule is the most powerful tool for differentiation. It is used very often. After
learning the Chain Rule you will be able to differentiate just about any function you can think
of. There are 2 good ways to state the Chain Rule, one using Newton’s notation, the other
using Leibnitz’s notation. They are equivalent. Sometimes you will find it easier to think in
terms of one or the other.
Chain Rule:

d

dx

[
f(u)

]
= f ′(u) · u′

dy

dx
=
dy

du
· du
dx

Before you can use the Chain Rule, you must know when to use it. The Chain Rule applies
when you have a composite function, that is a function of a function, for example cos(x3).
When you read this, you say ‘Cosine of x cubed.’ The of is how you know it’s a function of
a function. It is very different from a product, where of course you use the Product Rule. If
there is multiplication, use the Product Rule, if there is a function of another function, use the
Chain Rule.

Ex 1: Identify the appropriate rule to differentiate the following:
(a) y = cos(sin(x)) (b) y = cosx · sinx (c) y = tan(x2) (d) y = tan2 x

Solution:
(a) Chain Rule. (b) Product Rule. (c) Chain Rule. (d) Either, because it could be tanx ·tanx
or (tanx)2, but Chain Rule is better. z

That covers when we use the Chain Rule, now let’s move on to how it is used.

Ex 2: Differentiate y = cos(x3).
Solution: To use the Chain Rule, we need to find a good u. Most of the time, if you look

inside parentheses ( ) you will find a good u. But, u needs to be bigger than just x. Or,
we know how to differentiate cos of something, so whatever that something is needs to
be our u. In this case, that something is x3, so we say,
‘Let u = x3.’
and we see that now our problem is to differentiate y = cosu.

y = cosu u = x3

y′ = − sinu · u′ u′ = 3x2

Substituting u back in so that our answer is just in terms of x,

y′ = − sin(x3) · 3x2

= −3x2 sin(x3)
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z

•NoteOn Notation •
Be careful on with the difference between products and composition (functions of functions).

sin2 x = (sinx) · (sinx) 6= sin(sinx)

Now look at this table of derivatives, all the rules we have learned so far, but with the Chain
Rule explicitly written in to them.

d

dx
(k) = 0

d

dx
(u) =

du

dx
= u′

d

dx
(ku) = k

du

dx
= ku′

d

dx
(un) = nun−1du

dx
= nu′un−1

d

dx
(eu) = eu · du

dx
= u′eu

d

dx
(lnu) = 1u · du

dx
=
u′

u
d

dx
(cosu) = − sin(u) · du

dx
= − sinu · u′

d

dx
(sinu) = cos(u) · du

dx
= cosu · u′

d

dx
(tanu) = sec2(u) · du

dx
= sec2 u · u′

These are fairly straightforward. Notice the u’s, the Chain Rule applies to all of these. We’ll
have some more examples with the Chain Rule.

Ex 3: Take the derivative of y = sin(x2 + 1).
Solution: Look at our chart. It says that d

dx(sinu) = cos(u) ·u′. So what is our u? It is x2 + 1.
Taking the derivative of u, we see that u′ = 2x. So, y′ = 2x cos(x2 + 1). z

Ex 4: Find the derivative of f(x) = cos(x4 + x2).
Solution: Look at the chart. It says that d

dx(cosu) = − sin(u) · u′. Let u = x4 + x2. Taking
the derivative of u, u′ = 4x2 + 2x. So, f ′(x) = −(4x2 + 2x) sin(x4 + x2). z

Ex 5: If y = ecosx, what is y′?
Solution: From the chart d

dx(eu) = u′ · eu. Let u = cosx, and then u′ = − sinx. Thus
y′ = − sinx · ecosx. z

Notice that you must differentiate u, but in the solution you must use both the differentiated
u and the original u. Be careful to look for when you have a function of a function, as in the
examples above, and when you have a product of functions, as in the next example.

Ex 6: f(x) = lnx · sinx. Find f ′.
Solution: Here we need to use the Product Rule, because there is multiplication. It says that
if f(x) = u · v then f ′(x) = uv′ + vu′. Let u = lnx and v = sinx. Differentiating, u′ = 1/x and
v′ = cosx, so f ′(x) = lnx · cosx+ 1

x sinx. z

Ex 7: If y = (sinx)/(x3 + 2x), what is y′?
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Solution: Here we need the Quotient Rule. It states that d
dx(u/v) = (vu′−uv′)/v2. On top we

have u = sinx and underneath v = x3 + 2x. Differentiating, u′ = cosx and v′ = 3x2 + 2.
Thus

y′ =
(x3 + 2x) cosx− 3x2 + 2 sinx

(x3 + 2x)2
.

z

All the rules work like this. The mistake people make is to use the wrong rule. If you just
look carefully, it won’t be a problem. This next example illustrates when to use the Power Rule
versus when to use the Chain Rule. Look at the differences in the way the functions are written.

In the very first example in this section, for the derivative of y = tan2 x, the solution said
that both Product Rule and Chain Rule work, but that the Chain Rule is better. Let’s see why:

Ex 8: Differentiate y = tan2 x
(a) Using the Product Rule.
(b) Using the Chain Rule.
(c) Now differentiate tan5 x.

Solution:
(a) Using the product rule, we begin by writing out that y = tan2 x = tanx · tanx. Now
we can let u = tanx and v = tanx, and the Product Rule states that y′ = uv′ + vu′.
Because u = v = tanx, then u′ = v′ = sec2 x, so

y′ = tanx · sec2 x+ tanx · sec2 x = 2 tanx · sec2 x.

(b) Now, using the Chain Rule we will also rewrite. But this time we say y = tan2 x =
(tanx)2. Now we can let u = tanx, so y = u2, y′ = 2u ·u′, and u′ = sec2 x. Then, by the
Chain Rule

y′ = 2 · du
dx

= 2u sec2 x = 2 tanx · sec2 x.

(c) So far, perhaps it looks about the same to use the Product Rule and the Chain Rule.
But if our exponent is higher, then if you use the product rule you have to use it again
and again and again. But with the Chain Rule, you only need to apply it once. Just the
same as in part (b), y = tan5 x = (tanx)5. Now let u = tanx, so y = u5. Then dy

du = 5u4

and du
dx = sec2 x. Then, by the Chain Rule

y′ = 5u4 · u′ = 5 tan4 x · sec2 x.

The Chain Rule also has the advantage because it works for negative and non-integer powers
like −4 and 2/3 for which the Power Rule is useless. z

Ex 9: Differentiate the following: (a) f(x) = sin3 x, (b) g(x) = sin(x3).
Solution: In part (a) a we have the function sinx cubed. The power rule will work very well if

we let u = sinx, which means u′ = cosx. Then we can rewrite f(x) = u3. Differentiating
f ′(x) = 3u2 · u′. Finally, substituting in, f ′(x) = 3 sin2 x · cosx.

(b) Here we have the function sin of x3, so we will use the Chain Rule. Let u = x3, so
u′ = 3x2, and we rewrite g(x) = sinu. From the chart, g′(x) = cosu · u′. Substituting in,
g′(x) = 3x2 cos(x3). z

The lesson for this section is that if you use the right rule, it is easy to get the right answer.
Don’t rush into problems. First look carefully to decide which rule you need to use. With the
right rule you can differentiate almost anything!
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Exercises

Find the derivatives of the following using the Chain Rule:
2.6.1: (a) y = (4− 2x)6 (b) f(x) = cos(3x2 + x)

(c) g(x) = tan4(x) (d) y =
√

(x3 − x+ 1)

2.6.2: (a) v = 4 cos(3t− 6) (b) h = ln(4x2 − x)
(c) y = e3x+1 (d) X = (2 + t2)4

2.6.3: (a) y = (x3 − x2 + x)9 (b) y = 1
(3t2−t)4

(c) y = sin(x2) (d) y = sin2 x

2.6.4: (a) y = sin(x3) (b) y = sin3 x
(c) y = sin(x4) (d) y = sin4 x

2.6.5: (a) f(x) = 3
√
x3 + 1 (b) g(r) = ln(r3 + r2)

(c) h(t) = 3e2t2 (d) y = cos(x2)

2.6.6: (a) y = cos(x2 + x) (b) f = cos(sin(x))
(c) g = cos2(x2) (d) A(t) = Peit

For the following problems, you need to first find if you should use the Chain Rule, the
Product Rule, or the Quotient Rule.
2.6.7: (a) y = xex (b) f(x) = x2ex

(c) g(x) = xe2x (d) h(x) = x2e2x

2.6.8: (a) y = (xex)2 (b) f(x) = 2√
x2+1

(c) g(x) = sinx · cosx (d) h(x) = sin(cos(x))

2.6.9: (a) y = sin(2x)
cos(x2)

(b) f = cos4 x
x2−1

(c) g = cos2 x · sin2 x (d) h = sin(2x) tan(x)

2.6.10: (a) y = ln
(

3x2−1
x

)
(b) y = ln

(
(x+ 1)4 · cos(x)

)
2.6.11: (NECTA 2008) Differentiate with respect to x, y = cos3 x. (2 marks)

2.6.12: (NECTA 2006) Find dy
dx given that

y = ln
3x− 2
x+ 1

.

(3 marks)

2.6.13: (NECTA 2003) Differentiate the following expression with respect to x: xe3x.
(1 mark)

2.6.14: (NECTA 2003) Differentiate the following expression with respect to x: ln[sin(2x)].
(1 mark)

2.6.15: (NECTA 2001) Differentiate with respect to x: 4 sec( 3
√
x). (2 marks)

2.7 Implicit Differentiation

Implicit differentiation isn’t really anything new. It’s just the Chain Rule and the Product
Rule. About the only things you need to know are

1. d
dx(x) = 1, and

2. d
dx(y) = y′. Therefore:
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3. Using the product rule,

d

dx
(xy) = x · d

dx
(y) + y · d

dx
(x)

= x · y′ + y · 1
= x · y′ + y

And that’s just about it!
Implicit differentiation is useful in those cases where making y the subject is difficult or even

impossible. These are called implicit functions. For example, think back to Chapter 1 and the
Unit Circle. The equation for the Unit Circle is x2 + y2 = 1. You can make y the subject, but
you end up with y = ±

√
1− x2, which would not be fun to differentiate. So instead, if we want

to know the slope of points on the unit circle, we use implicit differentiation.

Ex 1: Find y′ for the Unit Circle, x2 + y2 = 1.
Solution: Implicit Differentiation usually has 3 steps:

1. You differentiate both sides of the equation with respect to x.

d

dx
(x2 + y2) =

d

dx
1 Differentiating both sides,

d

dx
(x2) +

d

dx
(y2) = 0 Using the Sum Rule and the Constant Rule

2x+ 2yy′ = 0 Chain Rule!

2. Collect on one side terms with y′.

2yy′ = −2x

3. Factor and solve for y′.

y′ =
−2x
2y

=
−x
y

z

Let’s look closer and the differentiation in the example above. We differentiate both x2 and
y2 with respect to x. Differentiating x2 is just as normal, because the variable in the function
matches what we’re differentiating with respect to. Thus d

dxx
2 = 2x.

But when we have d
dxy

2, then the variable of differentiation, x, is different from the variable
of the function, y. So we use the Chain Rule. In this case, the Chain Rule would tell us that

d

dx
(y2) =

dy

dy

(
y2
)
· y′

= 2y · y′

That’s how it goes.

Ex 2: Find y′. 2x = xy − cos y
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Solution:

d

dx
(2x) =

d

dx
(xy)− d

dx
(cos y) Differentiating both sides,

2 = xy′ + y + sin y · y′ Product Rule for xy, Chain Rule for cos y,
2− y = (x+ sin y)y′ Collecting terms and factoring,

y′ =
2− y

x+ sin y
And solving.

z

Ex 3: Use implicit differentiation to find y′ when y = cos−1 x.
•NoteOn Notation •
Although cos2 x = cosx · cosx, when we say cos−1 x we mean the inverse cosine function, or
arccos, such that cos−1(cosx) = arccos(cosx) = x. For 1/ cosx we use secx.
Solution: This one we need to start a little differently. We don’t know the derivative of cos−1 x,

so we’ll apply cosine to both sides first. At the end, y′ is y′ however we get it.

y = cos−1 x

cos y = x

d

dx
cos y =

d

dx
x Now we start the normal process.

− sin y · y′ = 1 Using the Chain Rule,
y′ = −1/ sin y And making y′ the subject.

So that’s good, but in this case we can do better. We’d really like to know what this
is in terms of x, so we need to write sin y in terms of x. Recall also our first step, that
cos y = x. Using our favorite identity,

cos2 y + sin2 y = 1

and then solving for sin y,
sin y =

√
1− cos2 y

and substituting in cos y = x,
sin y =

√
1− x2,

we have what we want, and we can substitute it into our expression from above:

y′ =
−1√

1− x2
.

And that is a pretty answer! z

Ex 4: What is the slope of the relation 6 = x2y − 2xy at the point where x = 1?
Solution: First we find y′, then we’ll find the slope at the specific point.

d

dx
6 =

d

dx
(x2y)− d

dx
(2xy)

0 = 2xy + x2y′ − 2y − 2xy′

2xy′ − x2y′ = 2xy − 2y

(2x− x2)y′ = 2xy − 2y

y′ =
2xy − 2y
2x− x2
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So, we have slope, now we need to find what it is at the given point. Using the original
equation, when x = 2, 6 = 12y − 1 · 2y = y − 2y = −y. Therefore y = −6, and slope, y′

is given by

y′ =
(2 · 2 · −6) + (−2 · −6)

2 · 1− 12
=
−12

1
= −12

z

Exercises

Use implicit differentiation to find y′:
2.7.1: (a) xy = 1 (b) x2y2 = 1

(c) x3y3 = 1 (d) x2y2 + xy = x

2.7.2: (a) x = y2 (b) x−1y + y−1x = y2

(c) (x+ y)2 = 4 (d) (x+ y)3 = 8

2.7.3: (a) cosx = sin y (b) 3x2 + 2xy − y2 = 1
(c) y = sin−1 x (d) ln y = ln 3x2

(x−1)3

2.7.4: (NECTA 2008) Find dy
dx when x3 + 3xy + y3 = 6. (2 marks)

2.7.5: (NECTA 2005) Find dy
dx for the following equation: x2 sin y − y cosx = 0. (3 marks)

2.7.6: (NECTA 2002) Find the value of dy
dx at the point (1,−1) if x2 − 3xy + 2y2 − 2x = 4.

(2.5 marks)

2.7.7: (NECTA 2001) Differentiate with respect to x: ln(xy2)− x+ y = 2. (3 marks)

2.8 To the MAX! The First Derivative Test

One of the most common applications of derivatives is finding maximum and minimum values
of functions. Look at the the graph of a parabola in Figure 2.1. When does the maximum
of occur? More specifically, what is the slope before the maximum? It is positive, increasing.
What is the slope after the maximum? It is negative, decreasing. So, what is the slope exactly
at the maximum? It must be 0!

Graph of y = −(x− 2)2 + 2

Figure 2.1: A parabola. Look at the slope at the maximum y-value.

Maximum means the highest point. Nothing can be higher. If the slope at the maximum
were positive, that would mean f(x) is increasing, so as x increased, f(x) would go higher than
the maximum. But you can’t go higher than the maximum. Therefore the slope isn’t positive
at the maximum. Similarly, if the slope is negative, that means that f(x) is decreasing. So if
you look back, if you decrease x a little, f(x) will be higher. But again, f(x) cannot be higher
than it’s maximum! Therefore, at the maximum value, the slope of f(x) is neither positive nor
negative.

So what is it? If it’s not positive or negative, it’s got to be 0. And that’s the lesson. Extreme
values, both maxima and minima, occur only at the x-value when the gradient/slope/rate of
change is 0.

Definition: The x-values of a function f(x) for which f ′(x) = 0 or f ′(x) does not exist are
called critical points.
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We will only look at situations where f ′(x) = 0, though it it good to know that if f ′(x) does
not exist it is also a critical point.

Ex 1: Find the critical points of f(x) = 2x3 − 3x2 − 12x− 5.

Solution: To find critical points, we take the derivative, set it equal to 0, and solve for x.

f(x) = 2x3 − 3x2 − 12x− 5

f ′(x) = 6x2 − 6x− 12 Take the derivative,

0 = 6x2 − 6x− 12 Set it equal to 0,

0 = x2 − x− 2 And solve for x.
0 = (x− 2)(x+ 1) Factoring, see Section 1.1.2 for more info.
x = 2 or − 1 These are the critical points.

z

Only at critical points can a function ‘turn,’ go from increasing to decreasing or from de-
creasing to increasing. Unfortunately, a function does not turn at every critical point. If the
derivative is negative, then 0, then positive, that means that the function has a local minimum
and it looks like this: ‘^.’ If the derivative is positive, then 0, then negative, that means the
function has a local maximum and it looks like this: ‘_.’ (If the critical point is where f ′(x)
does not exist, then they function may look like ∨ or ∧.)

Definition: We use the term local to describe a minimum or maximum because there may be
other points that are bigger or smaller, but locally, nearby, in the neighborhood, a local minimum
or local maximum is the lowest point or highest point, respectively.

It is also possible for the derivative to be positive, go down to touch 0, but then return to
positive-ness (or be negative-0-negative), in which case there is no maximum or minimum.

A function can only change from increasing to decreasing or from decreasing to
increasing at a critical point. So all local maxima and local minima occur at critical
points. But not every critical point is a local minimum or maximum.

Thus, the way to find out whether a critical point marks a local maximum, a local minimum,
or neither is to look at the sign (positive or negative) of f ′(x) before and after the critical point,
and see if the function it ^ or _. This is called the First Derivative Test.

Ex 2: Find the critical points of the following functions, and see if they are local maxima, local
minima, or neither:

(a) f(x) = x2 + 4x− 3
(b) f(x) = −x4/4 + 27x− 5
(c) f(x) = 4x3 − 9x2 − 12x+ 3

Solution: (a) First, we need to find critical points. To do this we take the derivative, set it
equal to 0, and solve for x:

f(x) = x2 + 4x− 3
f ′(x) = 2x+ 4 Take the derivative,

0 = 2x+ 4 Set it equal to 0
x = −4/2 = −2 And solve for x

We have 1 critical point: x = −2. Now we need to find out what is the sign of f ′(x) =
2x+ 4 before and after x = −2. It often helps to make a small table:
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Before −2 At −2 After −2
x-values x < −2 x = −2 −2 < x

Sign of f ′(x) 0
Slope of f(x) 0
Shape of f(x) —

To fill it in, we need to find the sign of f ′(x) when x < −2. Any x value will work. How
about x = −8 million. When x =-8 million, 2x + 4 will be negative. That’s all we
need to do there. And, when −2 < x? Let’s pick x = 0, that’s usually an easy one.
f ′(0) = 2 · 0 + 4 = 4, which is positive. Now we can fill in the table:

x-values x < −2 x = −2 −2 < x

Sign of f ′(x) –ve 0 +ve
Slope of f(x) decreasing 0 increasing
Shape of f(x) \ — /

And now it’s pretty clear that we have a ^, a local minimum. To find the actual value of the
minimum, we take our critical point, x = −2 and point it back in the original function,
not the derivative. f(−2) = (−2)2 + 4 · −2 − 3 = 4 − 8 − 3 = −7. So we say that
f(x) = x2 + 4x− 3 has a local minimum at (−2,−7).
(b) Same procedure:

f(x) = −x4/4 + 27x− 5

f ′(x) = −x3 + 27 Take the derivative,

0 = −x3 + 27 Set it equal to 0

x3 = 27 And solve for x
x = 3

Again, we have 1 critical point: x = 3. Let’s make our small table:

x-values x < 3 x = 3 3 < x

Sign of f ′(x) 0
Slope of f(x) 0
Shape of f(x) —

At the critical point x = 3 we already know that the derivative is 0 and that the shape is
a horizontal tangent –. We need to find the sign of f ′(x) when x < 3. Let’s choose
x = 0. f ′(0) = −03 + 27 = 27, so positive. Now for 3 < x, after 3: Let’s pick x = 4.
f ′(4) = −43 + 27 = −64 + 27 = −37, which is negative. Now we finish the table:

x-values x < 3 x = 3 3 < x

Sign of f ′(x) +ve 0 –ve
Slope of f(x) inc. 0 dec.
Shape of f(x) / — \

There is a maximum at x = 3. What is it’s value? f(3) = −34 + 27 · 3 − 5 = −5. Thus
f(x) = −x4/4 + 27x− 5 has a local maximum at (3,−5).
(c) And again:

f(x) = 4x3 − 9x2 − 12x+ 3

f ′(x) = 12x2 − 18x− 12 Take the derivative,

0 = 12x2 − 18x− 12 Set it equal to 0,

0 = 2x2 − 3x− 2 Simplify,
0 = (2x+ 1)(x− 2) And solve for x.
x = 2 or − 1/2 These are the critical points.
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This time, we have 2 critical points: x = −1/2 and x = 2. Because of 2 critical points,
our table will be bigger. We need to find the behavior before x = −1/2, in between −1/2
and 2, and after x = 2. It looks like this:

x-values x < −1/2 x = −1/2 −1/2 < x < 2 x = 2 2 < x

Sign of f ′(x) 0 0
Slope of f(x) 0 0

Shape of f(x) — —

At both critical points the derivative is 0 and that the shape is a horizontal tangent. We
need to find the sign of f ′(x) when x < −1/2. Let’s choose x = −1. Then f ′(−1) =
12 · −12 − 18 · −1 − 12 = 12 + 18 − 12 = 18, so positive. Next, in between x = −1/2
and x = 2, we will use x = 0. f ′(0) = −12, negative. Last, 2 < x, let’s pick something
really big. If x is huge, then +12x2 is much much bigger than −18x− 12, because of the
squared. So it will be positive.

x-values x < −1/2 x = −1/2 −1/2 < x < 2 x = 2 2 < x

Sign of f ′(x) +ve 0 –ve 0 +ve
Slope of f(x) inc. 0 dec. 0 inc.

Shape of f(x) / — \ — /

There is a maximum at x = −1/2 and a minimum at x = 2. f(−1/2) = 25/4 and f(2) = −10.
Thus f(x) = 4x3 − 9x2 − 12x + 3 has a local maximum at (−1/2, 25/4) and a local minimum
at (2,−10). z

Just one more example for the case where the critical point is neither a minimum nor a
maximum.

Ex 3: Find the critical points of y = x5 and evaluate whether they are maxima, minima, or
neither.
Solution: Finding critical points:

y = x5

y′ = 5x4

0 = 5x4

x = 0

For x < 0 choose x = −1. f ′(−1) = 5 · (−1)4 = 5 is positive. For 0 < x choose x = 1,
f ′(1) = 5 · 14 = 5 is also positive. The chart then is:

x-values x < 0 x = 0 0 < x

Sign of f ′(x) +ve 0 +ve
Slope of f(x) inc. 0 inc.
Shape of f(x) / — /

Because f(x) is never decreasing, there is no maximum or minimum. This critical point is not
a turning point, it is just a point where there is a horizontal tangent. z

Exercises

2.8.1: Find all critical points of the following functions:
(a) y = 2

3x
3 − 3x2 + 4x− 5 (b) f(x) = 3x2 − 4

(c) R(θ) = sin θ (d) S(θ) = cos θ

2.8.2: For each of the functions, find the critical points, then evaluate if they are local maxima,

local minima, or neither.
(a) X(t) = −4t2 + 2t (b) f(x) = x3

(c) y = x3 − 4x (d) R(θ) = sin θ
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2.8.3: (NECTA 2008) A farmer has 120 metres of fencing with which to enclose a rectangular
sheep-pen, using a wall for one side. Find that maximum area that can be enclosed. (5 marks)

2.8.4: (NECTA 2005) A farmer encloses sheep in a rectangular field using hurdle for 3 sides
and a long wall for the fourth side. If he has 100m of hurdles, find the greatest area he can
enclose. (5 marks)

2.8.5: (NECTA 2002) A rectangular block has a square base whose length is x centimetres.
Its total surface area is 150 cm2.
(a) Show that the volume of the block is 1

2(75x− x3) cm3.
(b) Calculate the dimensions of the block when its volume is maximum. (6 marks)

2.9 Fanya Tena: The Second Derivative Test

The Second Derivative Test does the same thing as the First Derivative Test, and more! It also
can do it faster, sometimes. First, we need to define concavity.

Definition: A function f(x) is called concave up on intervals where f ′′(x) > 0, and concave
down on intervals where f ′′(x) < 0.

Second derivatives, concavity, there like acceleration. They answer the question ‘How is the
slope of f(x) changing?’ Just like anything else, if f ′′(x) is continuous, then it can’t jump from
positive to negative without crossing 0.

Definition: The x-values of a function f(x) where f ′′(x) = 0 (or does not exist) are called
inflection points. Functions can change concavity only at inflection points.

Furthermore, what does f ′(x) do around a local maximum? A local maximum means
f ′(x) changes from positive to negative, which means f ′(x) is decreasing. In terms of second
derivatives, this means that f ′′(x) is negative.

By the same logic f ′′(x) is positive at local minima. So instead of doing a sign chart, all
you need to do is look at the sign of the second derivative at a critical point to know if it is a
local minimum or a maximum.

The Second Derivative Test:

• If f ′(c) = 0 and f ′′(c) is positive, then (c, f(c)) is a local minimum.

• If f ′(c) = 0 and f ′′(c) is negative, then (c, f(c)) is a local maximum.

The only weakness here is that if f ′′(x) = 0 at a critical point, then the test is inconclusive.
It might be a local maximum. It might be a local minimum. Or it might be neither. You’ll
have to use the First Derivative Test.

Ex 1: Use the Second Derivative Test to find all local extrema for f(x) = x2 + 4x− 3
Solution: We start out the same old way: find critical points.

f(x) = x2 + 4x− 3
f ′(x) = 2x+ 4 Take the derivative,

0 = 2x+ 4 Set it equal to 0,
x = −4/2 = −2 Critical Point.
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Now we need the Second Derivative.

f ′(x) = 2x+ 4
f ′′(x) = 2

So, that’s nice and easy. f ′′(x) = 2 always, so the second derivative is always positive. That
means our critical point is a local minimum. Again, to find the actual point, we use the original
function. f(−2) = (−2)2 + 4 · −2− 3 = −7. Thus f(x) = x2 + 4x− 3 has a local minimum at
(−2,−7). z

Ex 2: Find local extrema of f(x) = −1
3 x

3 + 2x2 + 4x+ 1.

Solution: First we find critical points.

f(x) =
−1
3
x3 + 2x2 + 4x+ 1

f ′(x) = −x2 + 4x+ 4 Take the derivative,

0 = −x2 + 4x+ 4 Set it equal to 0
x = (−x+ 2)(x+ 2) Factoring,
x = −2 or 2 Critical Points.

Now we need the Second Derivative.

f ′(x) = −x2 + 4x+ 4
f ′′(x) = −2x+ 4

How does it look at our critical points? When f ′′(−2) = 8, so f(x) has a local minimum
at x = −2. However, f ′′(2) = 0, so the Second Derivative Test is inconclusive. For this
critical point, we have to use the First Derivative Test. When x is between -2 and 2, say,
x = 0, then f ′′(0) = 4. And when 2 < x, say x = 3, then f ′′(3) = −2.

x-values −2 < x < 2 x = 2 2 < x

Sign of f ′(x) +ve 0 –ve
Slope of f(x) inc. 0 dec.
Shape of f(x) / — \

So at x = 2, f(x) has a local maximum. f(−2) = 8/3 + 8 − 8 + 1 = 11/3 and f(2) =
−8/3 + 8 + 8 + 1 = 43/3. Therefore (−2, 11/3) is a local minimum and (2, 43/3) is a local
maximum. z

Exercises

2.9.1: (NECTA 2005) A farmer encloses sheep in a rectangular field using hurdle for 3 sides
and a long wall for the fourth side. If he has 100m of hurdles, find the greatest area he can
enclose. (5 marks)

2.9.2: (NECTA 2002) A rectangular block has a square base whose side-length is x cm. Its
total surface area is 150 cm2.
(a) Show that the volume of the block is 1/2(75x− x3) cm3.
(b) Calculate the dimensions of the block when its volume is maximum. (6 marks)
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2.10 Applications of Derivatives

Exercises

2.10.1: (NECTA 2003) A hemispherical bowl of radius 6 cm contains water which is flowing
into it at a constant rate. When the height of water is h cm, the volume V of water in the bowl
is given by

V = π

(
6h2 − 1

3
h3

)
cm3.

(a) Given that h = 3, find the rate of change of the volume of water with respect to its level.
(b) What is the rate of change of the volume of water if h = 3 and t = 1 minute.
(c) Find the rate at which the water level is rising when h = 3, given that the time taken to
fill the bowl is 1 minute. (6 marks)

2.10.2: (NECTA 2002) Find the value of dy
dx at the point (2/3, 3, 4), if

x =
2t
t+ 2

and y =
3t
t+ 3

(3.5 marks)

2.10.3: (NECTA 2000) A curve is represented parametrically by

x =
1

1 + t
and y =

t3

1 + t
.

Find dy
dx in terms of t, then find the gradient to the curve at the point (x, y) = (1/2, 1/2).

(4 marks)

2.10.4: (NECTA 2000) Fencing is to be added to an existing wall of length 20m. how should
the extra fence be added to maximize the area of the enclosed rectangle if the additional fence
is 80m long? Calculate the maximum area. (7 marks)

2.11 Chapter Revision

Chapter Revision

d

dx
(k) = 0

d

dx
(u) =

du

dx
= u′

d

dx
(ku) = k

du

dx
= ku′

d

dx
(un) = nun−1du

dx
= nu′un−1

d

dx
(eu) = eu · du

dx
= u′eu

d

dx
(lnu) = 1u · du

dx
=
u′

u
d

dx
(cosu) = − sin(u) · du

dx
= −u′ sinu

d

dx
(sinu) = cos(u) · du

dx
= u′ cosu

d

dx
(tanu) = sec2(u) · du

dx
= u′ sec2 u



Chapter 3

Integral Calculus

3.1 Integrals as Antiderivatives

Definition: Integration is differentiation backwards.

∫
f(x) dx = F (x) means

d

dx
F (x) = f(x)

If the integral of f(x) is F (x), then it means that the derivative of F (x) is f(x).
•NoteOn Notation •
In the expression ∫

f(x) dx∫
is the integral sign, f(x) is called the integrand, and dx is the variable of integration, or the

variable that you are integrating with respect to.
For example, when you see

∫
2x dx the answer is all functions that you can differentiate to

get 2x. So what is the answer? x2! Because d
dxx

2 = 2x. But that’s not all. d
dx(x2 + 1 = 2x),

and d
dx(x2 + 2 = 2x), and even d

dx(x2 − π7 + 23 = 2x). So there isn’t just one answer, there are
infinitely many answers. What we do to avoid this problem is to use a constant, c, called the
constant of integration.

Ex 1: Evaluate
∫

2x dx.
Solution: ∫

2x dx = x2 + c

This is true because whatever the constant value of c, d
dx(x2 + c = 2x). z

Integration is very nice in that you can (and should) always differentiate your answer. If
you get the integrand, then your answer is right. It is so easy to check that you should never
get an answer wrong without knowing that it is wrong.

Ex 2: ∫
sinx dx

Solution: Think, what can you differentiate to get sinx? Of course, it’s cosx!, but be careful,
positive or negative? ∫

sinx dx = − cosx+ c

58
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Checking the answer: d
dx(− cosx+ c) = −− sinx = sinx, so it’s good. z

Ex 3: ∫
3x2 +

1
x
dx

Solution: What can you differentiate to get 3x2? x3. What about 1/x? It’s lnx. Thus

∫
3x2 +

1
x
dx = x3 + lnx+ c.

Differentiating to check the answer: d
dx(x3 + lnx+ c) = 3x2 + 1/x. z

Exercises

Just think about what these look like the derivatives of. Don’t forget about ‘+c’ !

3.1.1:

(a)
∫

4x3 + 3x2 dx (b)
∫
ex dx

(c)
∫

1
x
dx (d)

∫
cosx dx

3.1.2:

(a)
∫

100x99 dx (b)
∫

3x2 dx

(c)
∫

3
2
x2 dx (d)

∫
1
2
x2 dx

3.1.3: (NECTA 2006) A curve that passes through the origin has a gradient 2x − 1. Find
the equation of this curve in terms of x and y. (2 marks)

3.2 Integration Rules

In the last section we concentrated on the meaning of an integral as an antiderivative. Here we
focus on the mechanics of integration. Here is a list of integration rules. They all come directly
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from differentiation rules. ∫
k dx = kx+ c∫
f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx∫

kf(x) dx = k

∫
f(x) dx∫

xn dx =
1

n+ 1
xn+1 + c for n 6= −1∫

ex dx = ex + c∫
1
x
dx = lnx+ c∫

cosx dx = sinx+ c∫
sinx dx = − cosx+ c∫
sec2 x dx = tanx+ c

And now you just need practice at applying them again and again.

Ex 1: ∫
3x8 − sinx dx

Solution: ∫
3x8 − sinx dx =

∫
3x8 dx+

∫
− sinx dx

= 3
∫
x8 dx−

∫
sinx dx

=
3
9
x9 − (− cosx) + c

=
1
3
x9 + cosx+ c

z

Ex 2: ∫
200x99 − 30x5 + 8x dx

Solution: ∫
200x99− 30x5 + 8x dx =

∫
200x99 dx−

∫
30x5 dx+

∫
8x dx

=
200
100

x100 − 30
6
x6 +

8
2
x2 + c

= 2x100 − 5x6 + 4x2 + c

z

And so forth. These are not difficult, but you need lots and lots of practice!
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Exercises

3.2.1: (NECTA 2008) Integrate the following expression with respect to x: secx.
Note: This is impossible. The integral

∫
secx dx is not defined. You should write this on a

NECTA Exam, and maybe instead perform the integral of sec2 x with respect to x. (1 mark)

3.2.2: (NECTA 2001) Find y in terms of x given that dy
dx = x(1− x) and that y = 1/2 when

x = 0. (4 marks)

3.3 Area and the Definite Integral

Definition: If
∫
f(x) dx = F (x), then we define the definite integral from a to b of f(x) as:

∫ b

a
f(x) dx = F (b)− F (a)

We call a and b the lower bound and upper bound, respectively, or the limits of integration.

Ex 1: Evaluate ∫ 6

2
x dx

Solution: ∫ 6

2
x dx =

[
x2

2

]6

2

We integrate like normal, keeping the bounds

=
62

2
− 22

2
But then plug in the upper and lower bounds,

= 36/2− 4/2 And subtract the lower from the upper.
= 18− 2 = 16

z

Ex 2: Evaluate ∫ 3

0
x2 + 1 dx

Solution:∫ 3

0
x2 + 1 dx =

[
x3

3
+ x

]3

0

We integrate like normal,

=
(33

3
+ 3
)
−
(03

3
+ 0
)

But then plug in the upper and lower bounds,

= 9 + 3− 0 And subtract the lower from the upper.
= 12

z

For definite integrals, there is no need for +c. Watch what happens if we put it in (using
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the problem from Ex. 1):

∫ 6

2
x dx =

[
x2

2
+ c

]6

2

If we use +c,

=
(62

2
+ c
)
−
(22

2
+ c
)

It stays around a little while,

= 36/2 + c− 4/2− c But then goes away in the last step,
= 18− 2 = 16 Leaving the answer with no c.

And it will always work that way. It will always go away. So, for definite integrals, we do not
use +c.

3.3.1 Integrals as Sums

Up until now, we have treated integration only as the opposite of differentiation. Now it is time
to learn the true meaning of integration. Integration is a sum. It is a sum of infinitely small

Integration as Area

Figure 3.1: Integration as a sum of rectangles.

little pieces. For example, if look at ∫ 1

0
x2 dx ,

the actual meaning of the integral is to take little rectangles of height x2 and width dx, multiply
to get their area (x2 dx), and then add them up. Thus the integral above is actually a formula
for finding the total area between x2 and the x-axis from x = 0 to x = 1. I encourage an
interested student to find a more comprehensive book that will prove this.

The area under the curve f(x), between f(x) and the x-axis, from x = a to x = b is given
by

A =
∫ b

a
f(x) dx .

Ex 3: Find the area between the x-axis and the curve y = x2 + 1 from x = −1 to x = 1

Solution:

A =
∫ 1

−1
x2 + 1 dx

=
[
x3

3
+ x

]1

−1

=
(1

3
+ 1
)
−
(−1

3
− 1
)

=
2
3

+ 2 =
8
3

z

Ex 4: Find the area under the curve f(x) = 8x3 − 2x from 0 to 2.
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Solution:

A =
∫ 2

0
8x3 − 2x dx

=
[

8x4

4
− 2x2

2

]2

0

=
[
2x4 − x2

]2
0

= (2 · 24 − 22)− 0
= 32− 4 = 28

z

Exercises

3.3.1: (NECTA 2005) Find the area under the curve y = x2(x − 2) from x = 0 to x = 8/3.
(5 marks)

3.3.2: (NECTA 2001)

Evaluate
∫ x

a

0
sin ax dx

(2 marks)

3.3.3: (NECTA 2001) Find the area enclosed by the curve y = x3 + 5x2 + 4x and the x-axis
between x = 0 and x = 4. (3 marks)

3.4 U-S(U)bstit(U)tion

In many ways, the U-Substitution in integration is similar to how we used the Chain Rule back
in Section 2.6. All of the integration rules we have seen are just as good for u and du as they are
for x and dx. For example, we can take the power rule, and change it to use u and du instead
of x and dx:

If u is any differentiable function, then∫
un du =

1
n+ 1

un+1 + c,

as long as n 6= −1.

Ex 1: Find
∫

(x− 3)4 dx.
Solution: We cannot integrate this by normal rules, but if we let u = x − 3, then du

dx = 1, so
du = dx, and the integral is now∫

(x− 3)4 dx =
∫
u4 du Substituting u = x− 3, du = dx,

=
1
5
u5 + c Integrating,

=
1
5

(x− 3)5 + c and substituting back in.

z

For example, we know that
∫

cosx dx = sinx+ c, so we can rewrite the rule with u’s saying
that

∫
cosu du = sinu+ c.
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Ex 2: Find
∫

cos(x+ 1) dx.
Solution: Almost always, we look inside parentheses ( ) to find a u. Here, x + 1 is inside

parentheses, so we say
Let u = x+ 1.

Now we need differentiate to find du.

u = x+ 1
du

dx
= 1

du = dx

That’s good. Now we can substitute our integral. u = x+ 1 and du = dx, so∫
cos(x+ 1) dx =

∫
cosu du Substituting in,

= sinu+ c Integrating with respect to u,
= sin(x+ 1) + c Substituting back so our answer is in terms of x

And that’s it! z

These examples have been nice because du = dx, but that is not always true. But it’s not
too much harder:

Ex 3: Find
∫

2x cos(x2) dx.
Solution: We look inside parentheses to find u, so

u = x2

du

dx
= 2x Differentiating,

du = 2x dx

And now we can do our substituting:∫
2x cos(x2) dx =

∫
cos(x2)2x dx

=
∫

cosu du

= sinu+ c

= sin(x2) + c

z

And, sometimes, things are even more complicated with the dx bit. Look at the differences
between the previous example and the next example. The only difference is a 2,

Ex 4: Find
∫
x cos(x2) dx.

Solution: Inside the parentheses, u = x2, but looking at the integral, we can substitute u = x2

into cos(x2), getting cosu, and then what’s left over, zinazobaki, is x dx. However,

du

dx
= 2x

du = 2x dx
du/2 = x dx
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Which is what we need to proceed.∫
x cos(x2) dx =

∫
cos(x2)x dx

=
∫

cos(u)
du

2

=
1
2

∫
cosu dx

=
1
2

sinu+ c

=
1
2

sin(x2) + c

z

The most important thing to remember with u-substitution is that you must do it completely.
You cannot integrate something that has both u and x, or u and dx, it must be completely u’s
with a du or completely x’s with a dx. No mixing of u’s and x’s!

Exercises

Evaluate the integrals.
3.4.1:

(a)
∫

(x+ 1)3 dx (b)
∫

(x+ 2)−3 dx

(c)
∫

2x(x2 + 4)2 dx (d)
∫

2x cos(x2) dx

3.4.2:

(a)
∫

sec2(x+ π) dx (b)
∫

9x2 + 4x
3x3 + 2x2 + 1

dx

(c)
∫

4ex+2 dx (d)
∫

sinx cosx dx

3.4.3:

(a)
∫
xex

2
dx (b)

∫
(6x2 − 4)(x3 − 2x)−1 dx

(c)
∫
x sin(ωx2 + φ) dx (d)

∫
x(3x2 − 4)3 dx

3.4.4: (NECTA 2008) Integrate the following expression with respect to x: lnx
x . (1 mark)

3.4.5: (NECTA 2008) Evaluate ∫ 1

0

x√
3x2 + 1

dx

(4 marks)
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3.4.6: (NECTA 2005) Evaluate ∫ 1

0

4x dx
(2− x2)3/2

(3 marks)

3.4.7: (NECTA 2003) Evaluate ∫ 1

0
(3 + ex)(2 + e−x) dx

(2 marks)

3.4.8: (NECTA 2003) By using a suitable substitution, find∫
1√

(x− 3)
dx

(2 marks)

3.4.9: (NECTA 2002) Evaluate ∫ 2

0

x

(x2 + 1)2
dx

(3 marks)

3.4.10: (NECTA 2000) ∫
sinx cosx dx

(2 marks)

3.4.11: (NECTA 2000) Find ∫
5x4ex

5
dx

(3 marks)

3.5 Integration by Parts

Integration by Parts is equivalent to the Product Rule from differentiation. The Product Rule
states that

d

dx

(
uv
)

= u
d

dx
(v) + v

d

dx
(u).

If we integrate both sides, we can get the following formula:∫
d

dx

(
uv
)
dx =

∫
u
d

dx
(v) dx+

∫
v
d

dx
(u) dx

uv =
∫
u
d

dx
(v) dx+

∫
v
d

dx
(u) dx∫

u
d

dx
(v) dx = uv −

∫
v
d

dx
(u) dx∫

u dv = uv −
∫
v du

This last line is the formula we use. To be helpful, you need to pick u and dv out of your original
integral in a way so that

∫
v du is easier than the original. Here it is one more time:∫

u dv = uv −
∫
v du
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Ex 1: ∫
xex dx

Solution: We need to find a u and a dv in our equation, xex dx. We want to find them so
that v du will be easy to integrate. It looks like u = x is a very good choice because then
du = dx so v du is simple. So, we start like this:

u = x v =?
du =? dv = exdx

Now, we fill in the ?’s. u = x so du
dx = 1, which means that du = dx. dv = exdx, we

integrate to find v =
∫
dv =

∫
exdx = ex. Now we can complete our substitution chart:

u = x v = ex

du = dx dv = exdx

Substituting in and integrating: ∫
u dv = uv −

∫
v du∫

x exdx = xex −
∫
ex dx∫

x exdx = xex − ex + c

And that’s that. z

In choosing u and dv remember that you must be able to differentiate u and integrate dv.

Ex 2: ∫
x lnx dx

Solution: A first guess might be to let u = x and dv = lnx dx. But, then you remember that
we can’t integrate lnx dx! Haiwezakani! So that can’t possibly work as dv. So, switch it
around.

Let u = lnx and dv = x dx. Then du = 1/x dx and v = x2/2.

u = lnx v = x2/2

du =
1
x
dx dv = x dx

Substituting in and integrating: ∫
u dv = uv −

∫
v du∫

x lnx dx =
x2

2
lnx−

∫
x2

2
1
x
dx

=
x2

2
lnx−

∫
x

2
dx

=
x2

2
lnx− x2

4
+ c
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z

When integrating by parts, just like in U-Substitution, you must substitute completely.
Every part of the original integral needs to be either in u or in dv. It’s a long process, but it is
the only way to integrate some functions.

Ex 3: ∫ 1

0

x√
x+ 1

Solution: Definite integration by parts is no different. We will use u = x, because it’s derivative
is easy. That leaves dv = dx/

√
x+ 1 = (x+ 1)−1/2dx.

u = x v = 2(x+ 1)1/2

du = dx dv = (x+ 1)−1/2dx

Substituting and integrating, carrying the bounds until the end:∫ 1

0
u dv =

[
uv

]1

0

−
∫ 1

0
v du∫ 1

0

x√
x+ 1

=
[
2x(x+ 1)

1
2

]1

0

−
∫ 1

0
2(x+ 1)

1
2 dx

=
[
2x(x+ 1)

1
2

]1

0

−
[
2 · 2

3
· (x+ 1)

3
2

]1

0

=
[
2 · 1(1 + 1)

1
2 − 0

]
−
[

4
3

(1 + 1)
3
2 − 4

3
(0 + 1)

3
2

]
= 2
√

2− 4
√

8
3

+
4
3

=
6
√

2
3
− 8
√

2
3

+
4
3

=
4− 2

√
2

3

z

Exercises

If you have too much trouble one way, try a different u and dv.

3.5.1: (NECTA 2003) By using a suitable substitution, find (2 marks)∫
x√

(x− 3)
dx

Note: By saying ‘suitable substitution’ you may think it is possible using u-substitution.
Kumbe, it is not possible with u-substitution. You must integrate by parts.

3.6 Volume by Revolution

If you take a plane figure (like a rectangle, triangle, or half-circle), and revolve it around one
of its edges—or even another line in that plane—you can generate a 3-dimensional figure. For
example, a half-circle, rotated around its straight edge, will give a sphere, or a rectangle rotated
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about one of its edges will give a cylinder. If you take a notebook, and spin it around its edge,
you can maybe see the cylinder. Even try leaving some of the pages open, and they will be like
an ‘outline’ of the cylinder.

These solids are a little difficult to imagine, but it is very easy to find their volumes using
integration. it is analogous to finding area with definite integrals. In finding area, we have
infinitely many small rectangles of height f(x) and width dx, and then, when we integrate∫ b
a f(x) dx, we get the sum of all these little areas, the area under the curve.

To find volume, we look at little disks of radius f(x). The disks have this radius, and width
dx, so to calculate their volume, it is π[f(x)]2 dx, and when we integrate the volume of all these
little disks,

∫ b
a π[f(x)]2 dx, we get the sum, which is the volume of the revolution.

Definition: If a solid is obtained by revolving the area under f(x) from x = a to x = b about
the x-axis, the volume of the resulting solid is given by

V =
∫ b

a
π
[
f(x)

]2
dx.

Ex 1: The area between the x-axis and the curve y =
√
x for 4 ≤ x ≤ 9 is revolved around the

x-axis to obtain a solid. Find the volume.
Solution: Using our formula,

V =
∫ 9

4
π
[√
x
]2
dx

= π

∫ 9

4
x dx

= π

[
x2

2

]9

4

= π[81/2− 16/2]

=
65π
2

z

This can also be used to find some general formulas. For example, a right circular cone:

Ex 2: A right circular cone is generated by revolving the area under y = x from x = 0 to x = 1
about the x-axis. (a) Find the volume of this cone. (b) Find the volume for a general cone of
height h and radius r.
Solution: (a) This one is not so tough, we just use the formula again.

V =
∫ 1

0
π
[
x
]2
dx

= π

∫ 1

0
x2 dx

= π

[
x3

3

]1

0

=
π

3

(b) This one requires a little thought first. A right circular cone has a straight edge, so
we want to revolve a straight line, and its good that it goes through the origin, that is
the tip of the cone. But what is the equation for the line? We need to picture that x
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corresponds to the height of the cone, because the x-axis runs down the center of the solid
of revolution. So we are concerned with the interval from x = 0 to x = h. Now, what
about that radius. When x = 0 the radius is 0, that’s the point of the coin. Therefore, at
the other end, when x = h we want the radius to be its full value f(h) = r. So we want
to choose a slope m such that f(x) = mx and f(h) = r. Now we can see that f(x) = r

hx,
and when x = h, f(h) = r. So that is our function. To find volume, we use the formula:

V =
∫ h

0
π[
r

h
x]2 dx

= π
r2

h2

∫ h

0
x2 dx

= π
r2

h2

[
x3

3

]h
0

= π
r2

h2
· h

3

3

=
1
3
πr2h,

Which, if you look in a geometry book, is indeed the volume of a cone. It is very difficult to
find this formula through geometry. Archimedes was the first to do it, people had been trying
for almost 1,000 years before him. But he didn’t have calculus. With the technique of volume
by revolution, we can do it in half a page! z

Exercises

3.6.1: (NECTA 2004, 2008) Find the volume of the solid formed when the area between the
x-axis, the lines x = 2 and x = 4, and the curve y = x2 is rotated once about the x-axis. Leave
your answer in terms of π. (5 marks in 2008, 7 marks in 2004)

3.7 Applications of Integration

Exercises

3.7.1: (NECTA 2003) Find the mean of y = sinx over the interval from 0 to π. (2 marks)
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3.8 Chapter Revision and Exercises

∫
k du = ku+ c∫
f(u)± g(u) du =

∫
f(u) du±

∫
g(u) du∫

kf(u) du = k

∫
f(u) du∫

un du =
1

n+ 1
un+1 + c for n 6= −1∫

eu du = eu + c∫
1
u
du = lnu+ c∫

cosu du = sinu+ c∫
sinu du = − cosu+ c∫
sec2 u du = tanu+ c

Exercises

3.8.1: (NECTA 2002) Find an expression for the area under the curve y = x2(2x3 + 3)5.
(Note: This is silly without knowing the range of x values. It would be best to do it in general,
from x = a to x = b.) (4 marks)



Chapter 4

Vectors and Matrices

Vectors are how we deal with physical quantities in more than 1-dimension. We will look at only
2-dimensional and 3-dimensional vectors, but everything we do can be scaled up to as many
dimensions as you want!

4.1 Basic Vector Operations

4.1.1 What is a vector?

Definition: Vectors are not just numbers. Vectors have 2 parts: magnitude and direction.

Regular numbers do not have direction (except for positive and negative).
•NoteOn Notation •
There are many different ways to indicate that a variable, ‘a’, is a vector. All of the following
are used by different people:

a, ~a, a, â

and there are more. It is best to choose one. In this book, we will use ~a.

Ex 1: Identify the following as vector or scalar: (a) 3kg, (b) 2m up, (c) 9eV/m3, (d) East,
(e) 30m/s South.
Solution: (a) 3kg is a scalar.
(b) 2m up is a vector.
(c) 9eV/m3 is a scalar.
(d) East is just a direction, neither vector nor scalar.
(e) 30m/s South is a vector. z

Vectors, as we said, have magnitude and direction. They do not have a specific starting
place. Thus 2 vectors are equal if their magnitudes are equal and their directions are equal,
even if they are in different places.

We often write vectors in terms of unit vectors. Just like the unit circle is a circle of radius
1, a unit vector is a vector of magnitude 1. We use a ‘hat’ ˆ instead of an arrow ~ to denote
a unit vector. The 3 main unit vectors are î, ĵ, and k̂. Usually we think of î as being in the
x-direction, ĵ in the y-direction, and k̂ perpendicular to them both, in the z-direction.

If you are looking at a paper, usually we think of x and y as being just like normal 2-
dimensions, but if there is z then imagine the z-axis as coming straight up out of the paper
towards your face. That is the way to imagine it, but when we draw it, we must do it like in
the diagram.

There are two good ways to write a specific vector. If a certain vector is 2 units in the
positive x-direction, 3 units in the −y-direction, and 4 units in the positive z direction, we can

72
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3-D Coordinate System.

Figure 4.1: Drawing in 3 Dimensions.

write either

2̂i− 3ĵ + 4k̂ or

 2
−3v

4

 .

These mean the same thing. Sometimes we want to write vectors just as the definition states
them, as a magnitude and a direction. This is most common in two dimensions. For example
you might have a vector 5 units at a 45◦ angle. As usual, we measure angles from the x-axis.

Ex 2: The line from (1, 2) to (5, 5) is a vector, call it ~v. Find its magnitude, |~v|, its direction,
and write it in î, ĵ form.
Solution: The horizontal distance between the points is 5 − 1 = 4, and the vertical distance

between the points is 5− 2 = 3. Because the vector starts at (1, 2) and goes to (5, 5), it
is positive in both horizontal and vertical directions. Thus we can write it

4̂i+ 3ĵ.

Finding its magnitude is just using the distance formula or Pythagorean Theorem, like
way back in Section 1.4. So

|~v| =
√

42 + 32 = 5.

To find its direction, we use trigonometry. The angle θ it makes with the horizontal is
given by tan θ = 3/4, which yields

θ = 36.87◦.

z

Every 2-dimensional vector can be expressed as ~u = aî + bĵ, and its magnitude will be
|~u| =

√
a2 + b2.

Every 3-dimensional vector can be expressed as ~v = aî + bĵ + ck̂, and its magnitude will be
|~v| =

√
a2 + b2 + c2.

If a vector is given as a magnitude and a direction, you can use sine and cosine to find the
î, ĵ (and k̂) components.

4.1.2 Addition and Subtraction of Vectors

Vector addition and subtraction is intuitive: it works just like you want it to. If ~u = aî+bĵ+ck̂
and ~v = dî+ eĵ + fk̂, then addition is defined as:

~u+ ~v = (a+ d)̂i+ (b+ e)ĵ + (c+ f)k̂

Which is to say each component adds and nothing strange happens. In alternative notation: a
b
c

+

 d
e
f

 =

 a+ d
b+ e
c+ f


Subtraction is just the same, but with − instead of +. Vector addition and subtraction is only
defined if the vectors have the same number of dimensions. If they are different sizes, it is
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undefined. 
3
1
−4

6

+
(
−1

1

)
= Undefined

Ex 3: Find (a) ~a+~b for ~a = 2̂i− 3ĵ and ~b = 5̂i− ĵ, and

(b) ~p+ ~q for ~p =

 2
1
3

 and ~q =

 0
−4

5

.

Solution: (a)

~a+~b = 2̂i− 3ĵ + 5̂i− ĵ
= 7̂i− 4ĵ.

(b)

~p+ ~q =

 2
1
3

+

 0
−4

5

 =

 2
−3

8


z

What we have just seen is the algebraic meaning of vector addition. But it is also important
to understand vector addition geometrically.

4.1.3 Scalar Multiplication of Vectors

Just like addition and subtraction, scalar multiplication of vectors is very easy algebraically
(also intuitive), but also must be understood geometrically. But first, a warning:

Warning! Never say just ‘vector multiplication’ or ‘a times b’ if ~a and vecb are vectors.
There are 3 kinds of vector multiplication, and they are very different. You must say ‘dot’ if it
is a dot product, or ‘cross’ if it is a cross product. The first kind, scalar multiplication, is what
we mean usually by ‘times’. A scalar times a vector. If ~v = aî+ bĵ = ck̂ and k is a scalar, then
scalar multiplication is defined as:

~v = (ka)̂i+ (kb)ĵ + (kc)k̂

Which is to say each component gets multiplied and nothing strange happens. In alternative
notation:

k ·

 a
b
c

 =

 ka
kb
kc


Multiplying by a scalar ‘scales’ a vector. If the scalar is positive, changes the magnitude, but
leaves the direction the same. If the scalar is negative is makes the direction opposite and
multiplies the magnitude. This is to say:

|k · ~v| = |k| · |~v|

The magnitude of a scalar times a vector is the absolute value of the scalar times the magnitude
of the vector. This is most useful when you want to find unit vectors. As we said before, a unit
vector is any vector of magnitude 1. The unit vectors î, ĵ, and k̂ also have specific directions, but
we can find a unit vector pointing in any direction, just by dividing a vector by its magnitude.
For any vector ~n, the unit vector in the direction of ~n is given by

n̂ =
~n

|~n|
.
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Ex 4: Find a unit vector in the direction of ~a = 3̂i− 2ĵ + k̂.
Solution: First we find |~a| =

√
32 + (−2)2 + 12 =

√
14. Now, we want to scale ~a down to a

unit vector without changing its direction. So we just divide by its magnitude:

â =
~a

|~a|
=

3√
14
î− 2√

14
ĵ +

1√
14
k̂

z

4.1.4 Vector Equation of a Line

We have already said that vectors do not have a set starting or stopping point. In general, this
is true, but sometimes we like to use position vectors, which usually have a variable (like t, for
time), and they give the position of something in terms of that variable (like the position of
a particle at time t). So, position vectors are always starting at the origin, and they describe
position relative to the origin.

Another common type of vector is a displacement vector. Displacement is change in position.
A displacement vector starts at one position and goes to another position. For example, if
a particle moves from position vector ~p1 to ~p2, the displacement vector, the actual distance
traveled, is given by ~d = ~p2 − ~p1.

We can use this idea to understand the vector equation of a line. A line parallel to vector
~m going through a point with position vector ~a has vector equation

~r = ~a+ λ~m,

where ~r is the position vector for any point on the line, and λ is any real number. The vector
equation for a line is a lot like point-slope form. All you need to know is the position vector of
one point ~a, and the slope in vector form ~m. It is also good because it works just the same in
2-dimensions as in 3-dimensions.

Ex 5: Find the vector equation of a line parallel to ~m = 2̂i− ĵ + 3k̂ that goes through the point
with position vector 5̂i− 2ĵ + 4k̂.
Solution: ~r = 5̂i− 2ĵ + 4k̂ + λ(2̂i− ĵ + 3k̂) is the vector equation of the line. z

We can take the vector equation in the last example and write it out using î as x, ĵ as y,
and k̂ as z, and find a parametric equation of the line, like this:

x = 5 + 2λ
y = −2− λ
z = 4 + 3λ

Parametric Equations for a Line in 3-D

In 2-dimensions we can convert from vector equation to parametric equation to point-slope
or slope-intercept form. It goes like this:

Ex 6: Find equation in (a) vector form, (b) parametric form, and (c) slope-intercept form for
a line passing through (−1, 2) and parallel to the vector ~m = 3̂i− 4ĵ.
Solution: (a) Vector form is nice and easy: ~r = −î+ 2ĵ + λ(3̂i− 4ĵ).

(b) After we have vector form, we just need to separate the î and ĵ components to find
parametric form. {

x = −1 + 3λ
y = 2− 4λ

(c) We have two options, we can calculate slope as ∆y
∆x = −4

3 and go straight to point
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slope form: y − 2 = −4/3(x + 1) and then make y the subject to find slope-intercept
form. Or, we can use the parametric form, and find that

x = −1 + 3λ Making λ the subject,

λ =
x+ 1

3
Which we can then substitute

y = 2− 4λ Into the equation for y...

= 2− 4
x+ 1

3

y =
−4
3
x+

2
3

z

Exercises

4.1.1: (NECTA 2006) Given the points A(2,−1) and B(−3, 3), find:
(a) A vector from point A to point B in terms of unit vectors î and ĵ.
(b) The length of vector

−−→
AB.

(c) The unit vector in the direction of vector
−−→
BA. (5 marks)

4.1.2: (NECTA 2005) If ~a = 4̂i− 3ĵ, ~b = 2̂i+ 4ĵ, and ~c = 22̂i− 11ĵ, find the value of scalars
m and n for which m~a+ n~b = ~c. (4 marks)

4.1.3: (NECTA 2003) Given ~a =

 2
−1

3

 and ~b =

 −1
5
−3

, find ~a+~b. (1 mark)

4.1.4: (NECTA 2003) If ~a = 2̂i + 3ĵ and ~b = 3̂i + ĵ are position vectors of A and B,
respectively, find the position vector ~c of C, which divides AB internally in the ration 1:2.
(Note: This problem is unclear about the ratio. I assume it means to find the position vector
of point C such that the ratio of lengths AC : BC = 1 : 2.) (4 marks)

4.2 The ·Dot· Product

Warning! Never say just ‘vector multiplication.’ There are 3 kinds of vector multiplication,
and they are very different. The first kind, scalar multiplication, which is called ‘times,’ was
covered in the previous section. This section is about the second kind, the Dot Product. When
you have two vectors with a dot product, ~a ·~b, you must say ‘a DOT b’, use ‘times’ for scalar
multiplication.

Definition: The dot product of two vectors, written ~a ·~b and read ‘a dot b,’ is defined as

~a ·~b = |~a| · |~b| cos θ,

where θ is the angle between them. Usually the simplest way to find the dot product is to use
the following formula:

If ~v1 = a1î+ b1ĵ + c1k̂,

And ~v2 = a2î+ b2ĵ + c2k̂,

Then ~v1 · ~v2 = a1a2 + b1b2 + c1c2.
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Or, to use the alternative notation: a1

b1
c1

 ·
 a2

b2
c2

 = a1a2 + b1b2 + c1c2.

Notice that the answer is a scalar. Dot product takes two vectors input, and the output
is a scalar.

What the dot product does is give you a number that is bigger when the vectors are bigger,
and when they are in the same direction. In fact, the dot product is in the true definition of
work in physics.

Definition: Work is defined as ~F · ~d where ~F is the force applied and ~d is the distance moved.

There are two ways to calculate the dot product, so it is often very useful for finding the
angle θ between two vectors. Because ~a ·~b = |a||b| cos θ, if the vectors are perpendicular, then
θ = π/2 = 90◦, so cos θ = 0. Thus

~a ·~b = 0 if and only if ~a ⊥ ~b.

Also useful, because ~a ·~b = |a||b| cos θ we can make cos θ the subject and find that

cos θ =
~a ·~b
|~a| · |~b|

.

Ex 1: For ~a = 2̂i − 3ĵ + 5k̂ and ~b = î − 3ĵ + k̂ find (a) ~a ·~b, and (b) the value of the angle
between them.
Solution: (a) ~a ·~b = 2 · 1 + (−3)(−3) + 5 · 1 = 16.

(b)

|~a| =
√

22 + (−3)2 + 52 =
√

38,

|~b| =
√

12 + (−3)2 + 12 =
√

11 Thus, we know that: cos θ =
~a ·~b
|~a| · |~b|

cos θ =
16√

11 ·
√

38
We can now use a calculator to find θ,

θ = 38.5◦.

z

Ex 2: Find a unit vector perpendicular to ~u = 4̂i− ĵ.
Solution: Let ~v = xî+yĵ. We want ~v to be perpendicular to ~u = 4̂i− ĵ, so that means ~u ·~v = 0.

~u · ~v = 4− y = 0
4x = y

Any solution to this equation will be perpendicular to ~u. There are infinitely many
solutions, just like there are infinitely many vectors perpendicular to ~u. So, let’s pick
one, like x = 1 and y = 4, thus ~v = î + 4ĵ. This is a vector perpendicular to ~u, but we
need a unit vector, so we just divide by magnitude:

v̂ =
~v

|~v|
=

î+ 4ĵ√
12 + 42

=
1√
17
î+

4√
17
ĵ
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is a unit vector perpendicular to ~u. z

The Zero Vector, consisting of all 0’s (0̂i+0ĵ+0k̂), is often written as ~0. It has no magnitude,
but every direction. It is perpendicular to every other vector and parallel to every other vector.
It is 0 units in any direction. Generally, it is an exception to rules, and we will try not to use
if very much. In the example above, we could have picked ~0 as a vector perpendicular to ~u,
but then we would have been defeated when we tried to turn it into a unit vector. It is best to
avoid the zero vector.

The dot product also is nice in that it distributes over addition, which means that:

~a · (~b+ ~c) = ~a ·~b+ ~a · ~c

However, scalar multiplication expands and factors like normal, i.e.

k(~a ·~b) = (k~a) ·~b = ~a · (k~b)

The proofs of these are easy. You can do them if you try! Another nifty dot product fact is
that ~a · ~a = |~a|2, since the angle between ~a and itself is 0◦.

4.2.1 Projections

The dot product is also useful for finding the projection of one vector on another. A projection
is like a shadow, it shows you how much a certain vector goes in the direction of a different
vector. If you hold a ruler up at an angle from the desk, the shadow of the ruler on the desk
shows you how far the ruler goes in the direction of the desk.

Definition: The projection of a vector ~b onto another vector ~a is written:

proj~a~b.

The magnitude of the projection we can find from simple trigonometry: it will be |~b| cos θ. But

Projection Diagram

Figure 4.2: The projection of ~b onto ~a.

we know that
~a ·~b = |~a||~b| cos θ,

so we can say that ∣∣proj~a~b
∣∣ =

~a ·~b
|~a|

.

And what is the direction of the projection? Of course it is the same direction as ~a, so if we
just multiply its magnitude (above) by â = ~a

|~a| , we will have the projection.

proj~a~b =
(
~a ·~b
|~a|

)
~a

|~a|
=
~a ·~b
|~a|2

~a

And, do remember that ~a · ~a = |~a|2.

Ex 3: Find the projection of ~v = 3̂i− 4ĵ + 2k̂ onto ~u = −î+ 3ĵ − 5k̂.
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Solution: We just use the formula. That’s all there is to it.

proj ~u ~v =
~u · ~v
~u · ~u

~u

=
(−3) + (−12) + (−10)

1 + 9 + 25
(−î+ 3ĵ − 5k̂)

=
−25
35

(−î+ 3ĵ − 5k̂)

=
5
7
î− 15

7
ĵ +

25
7
k̂

z

Exercises

4.2.1: (NECTA 2008) If A, B, and C are points (−1, 3,−1), (3, 5,−5), and (2,−2, 1), re-
spectively, find the cosine of the angle θ between

−−→
AB and

−→
AC. (4 marks)

4.2.2: (NECTA 2005) Find the value of x which makes

x2
3

 perpendicular to

 2
−1
−4

.

(2 marks)

4.2.3: (NECTA 2005) Determine the value of λ so that ~a = 2̂iλĵ + k̂ and ~b = 4̂i − 2ĵ − 2k̂
are perpendicular. (2 marks)

4.2.4: (NECTA 2005) For any two non-zero vectors ~a and ~b, is ~a−~b is perpendicular to ~a+~b,
show that ~a = ~b. (4 marks)

4.2.5: (NECTA 2003) For the vectors ~a = î+ ĵ and ~b = 3̂i+ ĵ, find
(a) the acute angle θ between ~a and ~b.
(b) the resolved part of ~a in the direction of ~b. (6 marks)

4.2.6: (NECTA 2001) Find the angle between the lines

y = x
√

3 + 2 and y
√

3 = x− 4.

(2 marks)

4.2.7: (NECTA 2001) Given that ~r = 2̂i = 3ĵ, find the length of vector ~r and the angle it
makes with ~i. (3 marks)

4.2.8: (NECTA 2001) Find the projection of vector ~a on vector ~b given that ~a = î+ 3ĵ − 4k̂
and ~b = 4̂i− ĵ + k̂. (3 marks)

4.2.9: (NECTA 2000) Find to the nearest degree the angle between vectors ~P = 8̂i+ ĵ+3k̂m
and ~q = 2̂i+ 8ĵ − 3k̂. (2 marks)

4.2.10: (NECTA 2000) Find the value of the scalar t if the vectors t̂i = 4ĵ+3k̂ and 3̂i+5ĵ+tk̂
are orthogonal. (2 marks)

4.3 The ×Cross× Product

Warning! Never say just ‘vector multiplication,’ or ‘~u times ~v.’ There are 3 kinds of vector
multiplication, and they are very different. Scalar multiplication of vectors and the dot product
were covered in previous sections. This section is about the last kind, the Cross Product.
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Cross Product is also sometimes called ‘vector product’ because it is the only way to multiply
two vectors and have your result be a vector. We write

~u× ~v = ~w,

and it is defined so that
|~w| = |~u| · |~v| · sin θ

where θ is the angle between ~u and ~v. The direction of ~w is perpendicular to both ~u and ~v,
according to the Right-Hand Rule. The Right-Hand Rule states that if you use your right hand,
and point your first finger in the direction of ~u, your second finger in the direction of ~v, then
you point your thumb up, your thumb will be the direction of ~u×~v. Or you can curl your finger
from ~u to ~v, and again your thumb will show the direction of ~u×~v. This means that the cross

Right-Hand Rule.

Figure 4.3: Right-Hand Rule

product only works in 3-dimensions. The cross product is not defined for 2-dimensions.
•NoteOn Notation •
Some books will write ~u ∧ ~v instead of ~u× ~v. They mean the same thing, but we will continue
to use ×.

Definition: If ~a = xaî + yaĵ + zak̂, and ~b = xbî + ybĵ + zbk̂, then the cross product ~a ×~b is
defined as the determinant of the matrix

 î ĵ k̂
xa ya za
xb yb zb

 ,

which is given by
(yazb − zayb)̂i+ (xazb − zaxb)ĵ + (xayb − yaxb)k̂.

This is not so easy to memorize, so a good way to remember it is as follows: First, you rewrite
the first two columns of the matrix after the matrix:

î ĵ k̂ î ĵ
xa ya za xa ya
xb yb zb xb yb

,

Then you multiply along the diagonals, adding the down-right products (↘), and subtracting
the up-right products (↗), getting

îyazb + ĵzaxb + k̂xayb − xbyak̂ − y − bzaî− zbxaĵ,

which can then be simplified as above, yielding

(yazb − zayb)̂i+ (xazb − zaxb)ĵ + (xayb − yaxb)k̂.

Ex 1: Find ~u× ~v if ~u = î+ 2ĵ − k̂ and ~v = −î+ 2ĵ − k̂.
Solution: We write our matrix with the extra columns:

î ĵ k̂ î ĵ
1 2 −1 1 2
−1 2 −1 −1 2

,
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And we and products ↘ and subtract products ↗:

~u× ~v = (−2)̂i+ (1)ĵ + 2k̂ − (−2)k̂ − (−2)̂i− (−1)ĵ

= 2̂i− 2̂i+ ĵ + ĵ + 2k̂ + 2k̂

= 2ĵ + 4k̂

z

4.3.1 Properties of the Cross Product

This will just be a quick presentation of some of the important facts about the cross product.
A summary can be found at the end of the chapter on page ??.

~a×~b = −(~b× ~a) Not commutative. Order matters!

î× ĵ = k̂ ĵ × k̂ = î k̂ × î = ĵ

ĵ × î = −k̂ k̂ × ĵ = −î î× k̂ = −ĵ

~a× ~a = 0 A vector cross itself is 0

k(~a×~b) = (k~a)×~b = ~a× (k~b) Scalars work like normal multiplication.

~a× (~b+ ~c) = ~a×~b+ ~a× ~c It distributes over addition.

~a× (~b× ~c) 6= (~a×~b)× ~c But it does not associate!

|~a×~b| = |~a| · |~b| sin θ Where θ is the angle between them.

Imagine a parallelogram with sides ~a and ~b. The area of a parallelogram is base times height,
just like a square. The height of the parallelogram is ~a sin θ, so the area of the parallelogram is
given by ~a×~b. This is a good way to understand the magnitude of a cross product.

Parallelogram with sides ~a and ~b

Figure 4.4: Cross product for area.

You can see that the cross product is the strangest thing you have yet seen. Remember that
it does not commute: ~a×~b 6= ~b×~a. Matrix multiplication is also like this, as you will see soon.

Exercises

4.4 Vector Applications

Vectors are extraordinarily useful in many fields, especially computers and physics. All of the
pictures of letters and signs in this book are stored on a computer as vectors, so that they can
be scaled very easily and they look good whether big or small .

In physics, you learn that many things are vectors, such as position, velocity, force, etc,
but you have probably not seen them expressed much in vector form. Not yet. In university
physics, most things are done in vector form, because 1-dimension is easy and not at all like
real life. A required mathematics course for engineering or advanced chemistry and physics, is
Vector Calculus, where you learn to differentiate and integrate vectors. Vector Calculus is useful
whenever you have more than just 2 quantities. Good examples would be supply, demand, and
time, in economics; concentrations of 2 different chemicals and time in chemistry; and x- y−
and z- positions in physics.
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Integrating vectors can be difficult, but differentiating is pretty easy, and even shows up on
BAM NECTA exams sometimes, so this section will focus on differentiating vectors and some
other simple applications.

To start off, we need to remember some basic calculus/physics concepts. We will now use
‘vector functions’ to represent vector quantities. For example, instead of talking about velocity
v(t) at time t, we will talk about the vector velocity ~v(t) at time t.

• If position is given by ~s(t), then velocity ~v(t) = ~s ′(t) and acceleration ~a(t) = ~v ′(t) = ~s ′′(t).

• Momentum, a vector, is defined as ~p = m~v mass times velocity.

• Kinetic Energy, a scalar, is defined K = 1
2m|~v|

2, as half the mass times the magnitude of
the velocity squared. And |~v|2 = ~v · ~v.

• Force, a vector, is ~F = m~a = d
dt~p, mass times acceleration, which is also equal to the

derivative of momentum.

• Work, a scalar, is W = ~F · ~d, the force vector dot the displacement over which that force
acts.

• Power, a scalar, is defined as P = ~F · ~v = d
dtW , the dot product of force and velocity, or

the derivative of work.

• Angular Momentum, a vector, is defined as ~L = ~r× ~p, the radius cross the linear momen-
tum of the particles.

• Torque (or moment), a vector, is defined as ~τ = ~r× ~F = d
dt(~L), where ~r is the displacement

vector from the axis of rotation to where the force ~F acts, or the rate of change of Angular
Momentum.

• In Electricity and Magnetism, the force ~F on a charge q moving at velocity ~v in a magnetic
field ~B is given by ~F = q~v × ~B. Charge q is a scalar, the rest are vectors.

Now, obviously, we need to see what exactly does a vector function look like, and how do
you differentiate it? It’s pretty easy.

Ex 1: The position of a particle of at time t is given by ~s(t) = 3t̂i − 2t2ĵ + 5k̂. If the particle
has mass 5 kg, find it’s velocity and kinetic energy at time t.
Solution: We differentiate just like normal.

~v(t) = ~s ′(t) = 3̂i− 4tĵ + 0k̂

= 3̂i− 4tĵ m/s

From here, kinetic energy is easy, we just need to find the magnitude of velocity and
square it.

K(t) = m|~v|2

= 5
(√

32 + (−4t)2
)2

= 5(9 + 16t2)

= 45 + 80t2 J

z

Ex 2: If a force of 30 N is applied to a box while it is pushed 12m, and the force is applied at
a 30◦ angle to the motion, how much work is done?
Solution: W = ~F · ~d = |~F | · |~d| cos θ, so we can just multiply 30 N · 12 m · cos 30◦ = 311.8 J. z
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Exercises

4.4.1: Methane, CH4, has geometry with its 4 Hydrogen atoms arranged in a tetrahedron,
with the Carbon atom at the center. To get the right shape, we can give the Hydrogen atoms
coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1), with the Carbon at (1/2, 1/2, 1/2). Use dot
products of displacement vectors (Carbon to Hydrogen) to show that the bond angle, that is
the H-C-H angle, is about 109.5◦ for any two of the Hydrogen atoms.

4.4.2: A conical pendulum is swinging about the origin in a circle of radius 15cm. It’s position
at time t is given by the position vector ~r(t) = 15 cos t̂i+ 15 sin tĵ, where t is in seconds. If its
mass is 0.25kg, find (a) is linear momentum at time t, and (b) its angular momentum at time
t. Angular momentum, ~L = ~r × ~p, is the cross product of position (displacement from the axis
of rotation) and linear momentum.

4.4.3: (NECTA 2006) A particle of unit mass moves so that its position vector ~r at time t
seconds is given by

~r = (cos t)̂i+ (sin t)ĵ +
1
2
t2k̂.

Find the (a) Momentum at time t, (b)Kinetic energy at time t, (c) Force acting on the particle
at time t, (d) Power exerted by the force in (c) above, at time t.

4.4.4: (NECTA NECTA 2006) At time t, the position vectors of two particles P and Q are
given by:

~P = 2t̂i+ (3t2 − 4t)ĵ − t3k̂
~Q = t3î− 2tĵ + (2t2 − 1)k̂

Find the velocity and acceleration of Q relative to P when t = 3. (5 marks)

4.5 Basic Matrix Operations

4.5.1 What is a matrix?

A matrix is like a lot of vectors togethers. In fact, a vector is a matrix, with only one column.
But matrices (the plural of matrix is matrices) can be much bigger than vectors. A matrix with
r rows and c columns is called an r × c matrix, read ‘r by c.’ For example:

(
1 −4 2
8 0 −1

)
is a 2× 3 matrix, and

 3
−3

1

 is a 3× 1 matrix.

Matrices are also sometimes written with square brackets [ ] instead of parentheses. They mean
the same thing.

A =

[
x π

800 −6/7

]
is a 2× 2 matrix.

You can put anything you want in a matrix: numbers, fractions, positive, negative, variables,
anything is okay. Normally, we call matrices with capital letters, like A, B, C, etc.

Definition: The transpose of a matrix is what you get when you switch its rows and columns.

If A is a matrix, then AT , read ‘A transpose,’ is the matrix with rows equal to A’s columns.
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Ex 1: Find the transposes of the following matrices:

A =
(

1 2
3 4

)
, B =

(
1 2 3
4 5 6

)
, C =


1 2
3 4
5 6
7 8


Solution:

AT =
(

1 3
2 4

)
, BT =

 1 4
2 6
3 6

 , CT =
(

1 3 5 7
2 4 6 8

)

z

Notice that if a matrix is m× n, then its transpose will be n× n; the number of rows and
columns is switched.

4.5.2 Addition and Subtraction of Matrices

If two matrices are the same size, they can be added or subtracted. Addition and subtraction
of matrices is just like addition and subtraction of vectors. Corresponding elements add or
subtract, but they do not interact with each other, like this: a1 b1 c1

d1 e1 f1

g1 h1 i1

+

 a2 b2 c2

d2 e2 f2

g2 h2 i2

 =

 a1 + a2 b1 + b2 c1 + c2

d1 + d2 e1 + e2 f1 + f2

g1 + g2 h1 + h2 i1 + i2


The matrix size does not matter at all, it is always like this. But, you can only add or subtract
matrices that are the same size.

Ex 2: Find A+B, A−B, C +D, and B + C, if

A =
(

1 −3
2 0

)
, B =

(
3 2

−10 −5

)
, C =

(
0 2 4
−4 −2 0

)
, D =

(
1 1 1
−1 −1 −1

)
.

Solution:

A+B =
(

1 −3
2 0

)
+
(

3 2
−10 −5

)
=
(

4 −1
−8 −5

)
A−B =

(
1 −3
2 0

)
−
(

3 2
−10 −5

)
=
(
−2 −5
12 5

)
C +D =

(
0 2 4
−4 −2 0

)
+
(

1 1 1
−1 −1 −1

)
=
(

1 3 5
−5 −3 −1

)
B + C is undefined because they have different sizes. z

If every entry in a matrix is a 0, it is called a ‘zero matrix.’ These are all zero matrices: 0 0
0 0
0 0

 ,

(
0 0
0 0

)
,

 0
0
0
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4.5.3 Scalar Multiplication

In many ways, matrices work like vectors. Addition and subtraction are the same, and so is
scalar multiplication. If c is a scalar and A is a matrix, then the product c · A means that you
multiply every entry in A by c. For example:

If A =
(

0 2 4
−1 2.5 10

)
, then 3A =

(
0 6 12
−3 7.5 30

)
And, just like with vectors (and regular numbers), scalar multiplication distributes over matrix
addition, which means that

k(A+B) = kA+ kB,

where k is a scalar and A and B are matrices.

4.5.4 Matrix Multiplication

Matrix multiplication is a little more complicated. Remember the vector Dot Product from
Section 4.2? Matrix multiplication uses lots and lots of dot products. Also, always remember
that when we talk about matrices, we always say ‘row by column,’ in that order. Row first,
column second.

When you multiply two matrices, say A ·B = C, what you do is take the first row from A,
and dot it with the first column from B, and that is the first entry in C. For the second, you
take the first row from A (again), and dot it with the second column in B, and that is your
second entry. And so on. You always are doing rows from the first matrix dotted with
columns from the second matrix. Just like talking about matrices. Row by column, row
by column. Then, the entries go in the row and column of the answer corresponding to the row
from the first matrix and the column from the second matrix.

To look at a simple, common example of 2× 2 matrices:(
a b
c d

)(
e f
g h

)
=
(
ae+ bg af + bh
ce+ dg cf + dh

)
If you look at the result, C, the entry in the i’th column and the j’th row is the dot product of
the i’th row of A and the j’th column of B. If A has rA rows and cA columns, and B has rB
rows and cB columns, then

ArA×cA ×BrB×cB = CrA×cB

C will have the number of rows of A and the number of columns of B. We’ll have a couple
small examples, and then some bigger examples.

Ex 3: Find (a) AB and (b) BA if

A =

 3
2
1

 and B =
(
−1 0 1

)
Solution: (a) A is 3× 1 and B is 1× 3, so AB will be 3× 3.

AB =

 3 · −1 3 · 0 3 · 1
2 · −1 2 · 0 2 · 1
1 · −1 1 · 0 1 · 1

 =

 −3 0 3
−2 0 2
−1 0 1


(b) When we have BA, we see that B is 1× 3, A is 3× 1, so BA will be 1× 1:

BA =
(
−1 · 3 + 0 · 2 + 1 · 1

)
=
(
−2

)
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z

This last example demonstrates a very important point about matrix multiplication:it does
not commute. This means that most of the time, even for square matrices,

AB 6= BA

Ex 4: Find AB and BA if A =
(

1 −1
2 0

)
and B =

(
0 1
1 2

)
Solution:

AB =
(
−1 −1
0 2

)
BA =

(
2 0
5 −1

)
Once again, AB 6= BA. z

This is very important when working with equations of matrices. If you are given that

PQ = B

and you want to multiply through by A, you must matrix multiply from the same side!

PQ = B Given. Then multiply through by A,
A · PQ = A ·B Either from the left, like this,

or
PQ ·A = B ·A Or from the right, like this.

Not: A · PQ 6= B ·A You cannot mix sides!

Ex 5: Find PQ if

P =

 1 2
3 4
5 6

 and Q =
(

7 8
9 0

)
Solution: Here we see that P is 3× 2 and Q is 2× 2, so PQ will be 3× 2.

PQ =

 1 · 7 + 2 · 9 1 · 8 + 2 · 0
3 · 7 + 4 · 9 3 · 8 + 4 · 0
5 · 7 + 6 · 9 5 · 8 + 6 · 0

 =

 25 8
57 24
89 40


z

There is a special square matrix called the identity ; it has 1’s on the diagonal and 0’s
everywhere else, and we write it I. Multiplying by the identity is like multiplying by 1, AI = A
and IA = A. To show this:(

a b
c d

)
·
(

1 0
0 1

)
=
(
a · 1 + b · 0 a · 0 + b · 1
c · 1 + d · 0 c · 0 + d · 1

)
=
(
a b
c d

)
There is an identity matrix for every square size, 1× 1, 2× 2, 3× 3 identities are shown.

(
1
)
,

(
1 0
0 1

)
,

1 0 0
0 1 0
0 0 1
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Exercises

Use the following for problems 1-21.

A =
(

2 0
1 −1

)
, B =

(
3 6
0 −3

)
, C =

(
1 2 0
−1 −2 0

)
, D =

 1 0
2 2
−1 −1

 ,

E =

 2 0
4 4
−2 −2

 , F =
(

1 1
−1 −1

)
Calculate the following, if possible:

4.5.1:
(a) A+B (b) A+BT

(c) C +D (d) D + E

4.5.2:
(a) E + CT (b) 3D
(c) 2A+B (d) F T + F

4.5.3:
(a) BT − 3F (b) 2A+ 4(B + F T )
(c) AB (d) BA

4.5.4:
(a) BF (b) FB
(c) DC (d) CD

4.5.5:
(a) AD (b) DB
(c) (A+B)C (d) AC +BC

4.5.6: Find a scalar x such that 2D + xE = 0.

4.5.7: Find a matrix M such that (AB)T +M = F .

4.5.8: If A =
(

1 1
1 0

)
and B =

(
0 1
1 0

)
, find

(a) A2 (b) A3 (c) B2 (d) B3

4.5.9: (NECTA 2008) Find the value of x and y in the following relation:(
3 −5
2 x

)
+
(

1 y
3 2

)
=
(

4 6
5 −2

)
(2 marks)

4.5.10: (NECTA 2008) IfA =

 2 1 1
1 0 1
0 −1 0

 andB =

 1 −1 1
0 0 −1
−1 2 −1

, findAB. (2 marks)

4.6 |Determinants| and Inverses−1

What is an inverse? For regular numbers (scalars), x has an inverse x−1 such that x · x−1 = 1.
For matrices, it’s basically the same. Not all matrices have inverses, but some square matrices
have inverses have inverses such that A ·A−1 = I, the identity matrix. To find A−1, we need to
know the determinant of A, which is written |A|. The determinant is not a matrix or vector, it
is just a single scalar.

Definition: For a 2× 2 matrix the determinant is defined (and written) as follows:

If A =
(
a b
c d

)
, then |A| = a b

c d
= ad− bc.
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The inverse of a 2× 2 matrix A is then given by:

If A =
(
a b
c d

)
, then A−1 =

1
|A|

(
d −b
−c a

)
.

But, since you divide by the determinant to find the inverse, if the determinant is 0 then there
is no inverse. It doesn’t exist.

If |A| = 0, then A−1 does not exist.

Ex 1: Find the inverses, if they exist, of the following matrices.

(a) A =
(

2 4
−1 3

)
, (b) B =

(
0 −1
1 1

)
, (c) C =

(
3 2
6 4

)
.

Solution: (a) |A| = 2 · 3− 4 · (−1) = 10, so

A−1 =
1
10

(
3 −4
1 2

)
=
(

3/10 −2/5
1/10 1/5

)
.

(b) |B| = 0 · 1− (−1) · 1 = 1, so

B−1 =
1
1

(
1 1
−1 0

)
=
(

1 1
−1 0

)
.

(c) |C| = 3 · 4− 2 · 6 = 0. C does not have an inverse because its determinant is 0. z

Way back in Section 1.2 we talked about the inverse of a function. A linear transformation
is a function, and it’s inverse is the inverse of the linear transformation matrix.

4.6.1 Solving Linear Equations with Matrices

Matrix Algebra is applied everywhere, in computer graphics, solving complicated differential
equations, and it is the basis for how the Internet search engine Google works! One easy
application of matrices is solving linear equations.

Ex 2: If you are given the equations {
3x− 2y = 3
−x+ 2y = 4

to solve, you can use matrices.
Solution: Watch how we can rewrite these equations in matrix form:(

3 −2
−1 2

)(
x
y

)
=
(

3x− 2y
−x+ y

)
=
(

3
4

)
So what we can do is find the inverse of the big matrix, and then use matrix algebra to
solve. Let’s call

A =
(

3 −2
−1 2

)
, X =

(
x
y

)
, and M =

(
3
4

)
.

So now our system of linear equations looks like this:

AX = M
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Which means if we find A−1, we can left-multiply both sides, yielding

A−1AX = A−1M

IX = A−1M

X = A−1M

So, to find A−1 first we need to take the determinant. |A| = 3 · 2− (−2) · (−1) = 4. Thus

A−1 =
1
5

(
2 2
1 3

)
=
(

2/4 2/4
1/4 3/4

)
=
(

1/2 1/2
1/4 3/4

)
Now we need to multiply A−1M and the result will be X.

A−1M =
(

1/2 1/2
1/4 3/4

)(
3
4

)
=
(

3/2 + 4/2
3/4 + 12/4

)
=
(

7/2
15/4

)
= X =

(
x
y

)
So x = 7/2 and y = 15/4. Whenever possible, you should check your answer. For linear
equations checking is very easy, so 3x − 2y = 21/2 − 15 − 2 = 6/2 = 3, the first one is good,
and −x+ 2y = −7/2 + 15/2 = 8/2 = 4 the second checks, we’re good! z

4.6.2 Linear Transformations

Linear transformations are related to simultaneous linear equations. However, instead of solving
them, instead you put in input values and see what comes out. They are just functions.

Definition: The matrix M is a linear transformation matrix that maps the point (x, y) to its
image, (x′, y′) by the equation:

M

(
x
y

)
=
(
x′

y′

)
This is used for linear equations and functions, like

x 7→ ax+ by

y 7→ cx+ dy

In this case the transformation matrix would be

M =
(
a b
c d

)
,

because (
x′

y′

)
= M

(
x
y

)
=

ax+ by
cx+ dy

Ex 3: Find the images of the points (a) (1, 0) and (b) (3,−4) under the linear transformation
defined by

M =
(

2 −1
−3 4

)
Solution:

(a)
(

2 −1
−3 4

)(
1
0

)
=
(

2
−3

)
The image of (1, 0) is (2,−3).

(b)
(

2 −1
−3 4

)(
3
−4

)
=
(

10
−25

)
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The image of (3,−4) is (10,−25). z

A good linear transformation to know is a rotation. The linear transformation matrix for a
rotation by angle θ about the origin is

R =
(

cos θ − sin θ
sin θ cos θ

)
We also talked about composition of functions back in Section 1.2. For linear transfor-

mations, composition is easy. If you have two matrices M and N , and you want to find M
composed with N , M ◦N , it’s just M times N , MN .

Ex 4: Let R be the matrix for a rotation of 90◦ around the origin, and let M be the matrix
corresponding to the transformation

x 7→ 2x− 3y
y 7→ x+ y

(a) Find the image of the point (2, 1) under R.
(b) Find the image of your answer in part (a) if M is applied to it.
(c) Find the linear transformation matrix for the composite function of first R and then M .
Find the image of (2, 1) under this transformation.
Solution: (a) The rotation matrix R is given by

R =
(

cos 90◦ − sin 90◦

sin 90◦ cos 90◦

)
=
(

0 −1
1 0

)
,

so the image of (2, 1) is given by(
0 −1
1 0

)(
2
1

)
=
(
−1

2

)
,

which in Cartesian coordinates is (−1, 2).

(b) The matrix M is given by
(

2 −3
1 1

)
, so applying this to our answer

M

(
−1
2

)
=
(

2 −3
1 1

)(
−1
2

)
=
(
−2− 6
−1 + 2

)
=
(
−8
1

)
(c) The composite transformation of first R, then M , is written as

MR

(
x
y

)
,

thus the composite transformation matrix is just MR.

MR =
(

2 −3
1 1

)(
0 −1
1 0

)
=
(
−3 −2
1 −1

)
,

and the image of (2, 1) is given by(
−3 −2
1 −1

)(
2
1

)
=
(
−8
1

)
,

the same as in part (b). z
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4.6.3 3× 3 Determinants

Finding the determinant of a 3 × 3 matrix is a little more difficult. The process is just like
taking a cross product:

Definition: The determinant of a 3× 3 matrix is given as follows:

a b c
d e f
g h i

= aei+ bfg + cdh− gec− hfa− idb.

You can remember this formula in the same way as a cross product, first you rewrite the
first two columns

a b c a b
d e f d e
g h i h i

,

then you multiply across all the diagonals, adding down-right ↘ and subtracting up-right ↗,
ending up with ↘ +↘ +↘ −↗ −↗ −↗.

Ex 5: Find the determinant of the following matrices:

(a) P =

 2 4 0
1 3 9
5 7 6

 , (b) Q =

 0 −1 2
1 1 3
−2 5 −4


Solution: (a) First we will rewrite P with it first two columns added again at the end:

2 4 0 2 4
1 3 9 1 3
5 7 6 5 7

The we multiply along the diagonals, adding ↘ and subtracting ↗.

|P | = 2 · 3 · 6 + 4 · 9 · 5 + 0 · 1 · 7− 5 · 3 · 0− 7 · 9 · 2− 6 · 1 · 4
= 36 + 180 + 0− 0− 126− 24
= 66

(b) For this one we must be very careful about what is negative and what is positive.
Rewrite Q with it first two columns added again at the end:

0 −1 2 0 −1
1 1 3 1 1
−2 5 −4 −2 5

And then, once again, we multiply along diagonals, adding ↘ and subtracting ↗.

|Q| = 0 · 1 · (−4) + (−1) · 3 · (−2) + 2 · 1 · 5
− (−2) · 1 · 2− 5 · 3 · 0− (−4) · 1 · (−1)

= 0 + 6 + 10− (−4)− 0− 4
= 16

z

Finding the inverses of 3× 3 matrices is considerably more difficult and will not be covered
in this book.
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Exercises

4.6.1: (NECTA 2006) Use the inverse matrix method to solve: (5 marks)

2y + 3x− 15 = 0
2x− 20 + 3y = 0

4.6.2: (NECTA 2006) If T is a linear transformation such that T =
(
a b
c d

)
and T (, y) =

(3y, 5x), find the matrix T , then evaluate T (0, 0). (5 marks)

4.6.3: (NECTA 2005) Solve the following system of equations by using the matrix method:

4x+ 3y = 31
9y − x = 41

(4 marks)
4.6.4: (NECTA 2003) Given that A =

(
2 k
k 8

)
is a singular matrix, find the value of k if

k ∈ R+. (1 mark)

4.6.5: (NECTA 2003) (a) Find the inverse of B given B =
(

2 1
4 −1

)
.

(b) Use part (a) to solve the following system of system of simultaneous equations:

2x+ y = 8
4x− y = 10

}
(5 marks)

4.6.6: (NECTA 2003) Solve the following system of equations by using inverse of matrices:

x+ 2y = 10
2x− y = 5

(3 marks)

4.6.7: (NECTA 2002) A transformation M is given by the matrix M where M =
(

4 1
2 3

)
.

Find:
(a) The image of point (−2, 5) under M .
(b) The inverse of M . (5 marks)

4.6.8: (NECTA 2001) Let A =
(

2 1
3 2

)
represent a transformation. Find the image of the

vector
(

2
−2

)
under this transformation. (2 marks)

4.6.9: (NECTA 2001) Find the inverse of the matrix A =
(

K −1
−1 0

)
. (2 marks)

4.7 Cramer’s Rule

Cramer’s Rule is a nice way to solve linear equations using matrices, without bothering to find
the inverses. All you need to find is the determinants involved. In 2-dimensions, Cramer’s Rule
states that if you are given {

ax+ by = e

cx+ dy = f
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which, as we saw in the last section, that(
a b
c d

)(
x
y

)
=
(
e
f

)
,

then the solution is given by

x =

e b
f d

a b
c d

and y =

a e
c f

a b
c d

In words, to find x, the first variable, replace the first column of the matrix with the solution
vector. Take the determinant and divide by the determinant of the original matrix, and you
get x. To find y, the second variable, replace the second column of the matrix with the solution
vector. Take the determinant and divide by the determinant of the original matrix, and you
get y.

Ex 1: Use Cramer’s Rule to solve {
3x+ 2y = −1
4x− 3y = 10

,

Solution: First, we write the equations in vector form:(
3 2
4 −3

)(
x
y

)
=
(
−1
10

)
,

then, according to Cramer’s Rule, the solution is given by

x =

−1 2
10 −3
3 2
4 −3

=
3− 20
−9− 8

= 1

y =

3 −1
4 10
3 2
4 −3

=
30−−4
−9− 8

= −2

Thus x = 1 and y = −2 is our solution. As always, we should check it:

3 · 1 + 2 · (−2) = −1 Check!
4 · 1− 3 · (−2) = 10 Check!

So it’s good. z

Cramer’s Rule works just the same in 3-dimensions. A general system of 3 linear equations
is:

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

,
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which has matrix form  a1 b1 c1

a2 b2 c2

a3 b3 c3

 x
y
z

 =

 d1

d1

d3


To make this simpler, we will let ∆ be the main determinant,

∆ =
a1 b1 c1

a2 b2 c2

a3 b3 c3

,

and call ∆n the determinant of this matrix with the solution vector,

 d1

d1

d3

, substituted into

the nth column of the matrix. Then, Cramer’s Rule simply states that

x =
∆1

∆
, y =

∆2

∆
, z =

∆3

∆
.

This can even continue on up to 4-dimensions, 5-dimensions, etc. But that is the work of a
computer. For us people, we will stop at 3-dimensions.

Ex 2: Use Cramer’s Rule to solve:

x− 2y − 3z = d1

3x+ 5y + 2z = d2

2x+ 3y − z = d3

,

Solution: Writing the equations in matrix form: 1 −2 −3
3 5 2
2 3 −1

 x
y
z

 =

 0
0
2


We can now apply Cramer’s Rule.

∆ =
1 −2 −3
3 5 2
2 3 −1

= 1 · 5 · (−1) + (−2) · 2 · 2 + (−3) · 3 · 3
− 2 · 5 · (−3)− 3 · 2 · 1− (−1) · 3 · (−2)

= −22

∆1 =
0 −2 −3
0 5 2
2 3 −1

= 0 · 5 · (−1) + (−2) · 2 · 2 + (−3) · 0 · 3
− 2 · 5 · (−3)− 3 · 2 · 0− (−1) · 0 · (−2)

= 22

∆2 =
1 0 −3
3 0 2
2 2 −1

= 1 · 0 · (−1) + 0 · 2 · 2 + (−3) · 3 · 2
− 2 · 0 · (−3)− 2 · 2 · 1− (−1) · 3 · 0

= −22

∆3 =
1 −2 0
3 5 0
2 3 2

= 1 · 5 · 2 + (−2) · 0 · 2 + 0 · 3 · 3
− 2 · 5 · 0− 3 · 0 · 1− 2 · 3 · (−2)

= 22
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x =
∆1

∆
=

22
−22

= −1, y =
∆2

∆
=
−22
−22

= 1, z =
∆3

∆
=

22
−22

= −1,

As always, we should check our answers:

x− 2y − 3z = −1− 2 · 1− 3 · (−1) = 0 Check!
3x+ 5y + 2z = 3 · (−1) + 5 · 1 + 2 · (−1) = 0 Check!

2x+ 3y − z = 2 · (−1) + 3 · 1− (−1) = 2 Check!

So it’s good. z

Just like in finding inverses, when we use Cramer’s Rule we divide by a determinant. Here,
if the determinant ∆ = 0, that means that either there is no solution, or there is no unique
solution. Obviously, there is no solution to:{

x+ y = 1
x+ y = 2

,

x+ y can be either 1 or 2, but it can’t be both. If we try to use Cramer’s Rule we will find that

1 1
1 1

= 1− 1 = 0,

which in this case is telling us that a solution does not exist.
Similarly, there are many solutions to{

x+ y = 1
2x+ 2y = 2

.

These equations are not really different. If x+ y = 1 then it must be true that 2x+ 2y = 2, so
the second equation doesn’t add any new information. Once again, if we try Cramer’s Rule, we
will get a 0 determinant:

1 1
2 2

= 2− 2 = 0,

in this case indicating that there is not a unique solution. Instead, there are infinitely many.

Exercises

4.7.1: (NECTA 2008) Solve the following system of equations by Cramer’s Rule.

x+ y + z = 6
3x− 2y − z = −1

2x+ 4y + 3z = 19

(6 marks)

4.7.2: (NECTA 2003) Solve the following system of equations:

x+ y + 2 = 6
3x− 2y − z = −1

2x+ 4y + 3z = 19

(4 marks)
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4.7.3: (NECTA 2002) Solve the following system of equations by the matrix method:

2x− 3y + z = 3
−x+ 4y + 3z = 16

3x+ 2y − 2z = 1

(5 marks)

4.7.4: (NECTA 2001) Use Cramer’s Rule to solve the following system of simultaneous
equations.

2x− 2y = 6
x+ 2y = 0

(2 marks)

4.8 Chapter Revision and Exercises

Properties of Dot· and Cross× Products

Let ~a = xaî+ yaĵ + zak̂, ~b = xbî+ ybĵ + zbk̂, with θ as the angle between ~a and ~b, and let ~c also
be a 3-dimensional vector. Then

~a ·~b = |~a||~b| cos θ = xaxb + yayb + zazb Scalar!

~a×~b = (yazb − zayb)̂i+ (zaxb − xazb)ĵ + (xayb − yaxb)k̂ Vector!

|~a×~b| = |~a||~b| sin θ
~a · ~a = |~a|2

~a ·~b = 0 if and only if ~a ⊥ ~b
~a× ~a = 0

~a×~b = −(~b× ~a)

~a× (~a×~b) = 0 (because ~a×~b ⊥ ~a)

~a · (~b× ~c) = (~a×~b) · ~c

Exercises

4.8.1: (NECTA 2008)
(a) Show that the vectors 3̂i+ 4ĵ − 2k̂ and 4̂i+ ĵ + 8k̂ are perpendicular.
(b) Given the vectors ~a = 3̂i + 4ĵ − 2k̂ and ~b = 4̂i + ĵ + 8k̂, find the projection of ~a onto ~b.
(6 marks)

4.8.2: (NECTA 2006) A line passes through the point (2,−1, 4) and is in the direction of
vector î+ ĵ − 2k̂. Find the:
(a) vector equation of the line.
(b) angle the line makes with the positive x axis. (5 marks)

4.8.3: (NECTA 2005) A, B, and C are the points (−1, 3,−1), (3, 5,−5), and (2,−2, 1),
respectively. Find the

(a) Distance AB.
(b) Cosine of the angle θ between AB and AC. (4 marks)
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4.8.4: (NECTA 2003) If A =
(

5 7
−2 3

)
, B =

(
4 −5
9 7

)
, and C =

(
2 −3
1 1

)
, show that

A+B − 2C is a singular matrix. (3 marks)

4.8.5: (NECTA 2002) Given the vectors ~a = 2̂i+ ĵ − 2k̂ and ~b = ĵ − k̂,
(a) Find the vector ~c such that ~a+ 2~b+ ~c = 0.
(b) What is the sine of the acute angle enclosed by the vectors ~a and ~b?
(c) Find the unit vector perpendicular to the vectors ~a and ~b. (10 marks)

4.8.6: (NECTA 2000) If P and Q are the points (8, 1, 3) and (2, 8,−3), respectively, find a
unit vector parallel to the displacement vector

−−→
PQ. (2 marks)

4.8.7: (NECTA 2000) Use the matrix inverse method to solve the following simultaneous
equations:

x+ 2y = 8
4x+ 3y = 22

(3 marks)

4.8.8: (NECTA 2000) Solve the following system of equations:

3x− y + z = −2
x+ 5y + 2z = 6
2x+ 3y + z = 0

(6 marks)



Chapter 5

Probability and Statistics

5.1 Factorial!!! and Permutations

Definition: A permutation is a certain way of arranging some objects. So n! is the number of
permuting, or ways of ordering, n different objects.

In our first example, with ABC, we had 3 objects, so we got 3·2·1 = 6 possible arrangements.
If you look on your calculator you probably have a factorial button that looks like ! , which
will calculate factorials for you.

Ex 1: How many ways can you arrange the letters of ‘shega’?
Solution: Shega has 5 letters, and they are all different, so our answer is 5! = 5 ·4 ·3 ·2 ·1 = 120

z

This is applicable to more situations than just arranging letters.

Ex 2: 10 girls are running in a race. How many possibilities are there for the 1st, 2nd, and 3rd
places?
Solution: It’s not just a factorial, because we are not looking at all 10 places, only the first,
second, and third. For first place, there are 10 possibilities, then for second place there are
9 possibilities, and for third place 8 possibilities. Thus the total number of possibilities is
10 · 9 · 8 = 720. z

There’s also a better way to do problems like our last example. How many ways can we
permute (arrange) r objects if there are n total objects? Just like in the race example, we for
the first one we have n choices, for the second n − 1, so it starts like factorial, but we have to
stop after r choices. Thus it is

n · (n− 1) · (n− 2) · . . . · (n− r + 1)

For example, in the race, we had

10 · (10− 1) · (10− 2).

This is all fine, but it is a little hard to calculate if r is big. But we can write a formula for this
in terms of factorial. See how

n · (n− 1) · (n− 2) · . . . · (n− r+ 1) =
n · (n− 1) · (n− 2) · . . . · (n− r + 1) · (n− r) · . . . · 2 · 1

(n− r) · (n− r − 1) · (n− r − 2) · . . . · 2 · 1
,

because everything after (n− r + 1) will cancel with the bottom. We can write the same thing
using factorial notation:

=
n!

(n− r)!

98
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Definition: The number of ways to permute r objects from n total objects is called ‘n permute
r,’ and is written as

nPr =
n!

(n− r)!

Probably there is a button on your calculator to do this also. If not, you can just use factorials.

Exercises

5.1.1: (NECTA 2006) Two dice are thrown together. What is the probability of a score of
an 8? (4 marks)

5.1.2: (NECTA 2006) Two of my friends and I play a game of pure chance three times. What
is the probability of me winning:
i. Every time? ii. Only the third time? (6 marks)

5.1.3: (NECTA 2003) The probability that Juma will be alive in 20 years to come is 0.85,
and the probability that his wife will be alive is 0.90. Fid the probability that both will be alive
in 20 years to come. (3 marks)

5.1.4: (NECTA 2003) How many different arrangements can be made of the letters in the
word “AMEFANIKIWA”? (3 marks)

5.1.5: (NECTA 2003) Over a period of time it is found that 10% of the fuses produced by a
certain manufacturing process are defective. Using binomial distribution, find the approximate
probability that in a sample of 10 fuses chosen at random, there will be at most 1 which is
defective. (Note: The binomial distribution has not been covered, but you can still find the
answer using other methods.) (4 marks)

5.1.6: (NECTA 2000) Find the number of permutations of the letters of the word YANGA.
(2 marks)

5.1.7: (NECTA 2000) Find whether, when a die is thrown, the following pairs of events are
mutually exclusive or not.
(a) {1, 3, 5}, {4, 5}
(b) {1, 2, 3}, {4, 5, 6} (4 marks)

5.1.8: (NECTA 2008) A bag contains 3 white balls and 2 black balls. Two balls are taken
from the bag. What is the probability that one is white and the other is black? (3 marks)

5.1.9: (NECTA 2008) A committee of 5 principals is to be selected from a group of 6 male
principals and 8 female principals. If the selection is made randomly, find the probability that
there are 3 female principals and 2 male principals. (5 marks)

5.1.10: (NECTA 2002) If P (A) = 0.5, P (B) = 0.3, and P (A ∩B) = 0.2, find
(a) P (A ∪B).
(b) P (A\B). (2 marks)

5.1.11: (NECTA 2001) The events A and B are such that P (A) = 0.43, P (B) = 0.48, and
P (A∪B) = 0.78. Show that the events A and B are neither mutually exclusive nor independent.
(3 marks)

5.1.12: (NECTA 2001) A bag contains 10 red balls, 9 blue balls, and 5 white balls. Three
balls are taken from the bag at random and without replacement. Find the probability that all
three balls are of the same colour. (3 marks)
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5.2 Ordering and Choosing

Probability depends on the number of ways things are possible. The probability of something
happening is the number of ways it can happen, divided by the total number of things that can
happen. Thus, in this section, we will find how to count the number of ways things can happen.

5.2.1 Ordering

We begin with factorials, the number of ways of ordering n different things.

Definition: The number of ways of arranging n different objects is given by n!, which is read
‘n factorial,’ and is given by the formula:

n! = n · (n− 1) · (n− 2) · (n− 3) · . . . · (2) · (1)

Why is this it? It all depends on the number of choices, the number of ways, the namba ya
chaguzi. For example, if we have the letters A, B, and C, how many ways can we arrange these
3 objects?

Three is not too many, so we can just make a list:

ABC BAC CAB

ACB BCA CBA

There are 6 ways. But what if we look at the letters A, B, C, D, E, and F? There are far too
many to just make a list, we need a way to calculate it.

However we do it, there will be a first letter, and second letter, and a third letter. How
many choices are there for the first letter? If we have 6 letters, there are 6 choices for the first
letter. Then, after picking the first letter, how many choices are remaining for the second letter?
Zinabaki 5. We have already picked one for the first, so there are 5 choices remaining for the
second letter. And now how many for the 3rd letter? 4 choices. And we can keep on going...
The total number of possibilities is the product of all these choices. So, if we have 6 letters to
arrange, we have 6 · 5 · 4 · 3 · 2 · 1 = 6! = 720 ways to arrange them. I’m glad we didn’t try to
make a list! And before, when we had 3 items, our list showed 6 ways. Kumbe, 3! = 3 ·2 ·1 = 6.

5.2.2 Permuting

5.2.3 Choosing

5.2.4 Doing All Three

5.2.5 Exercises

5.3 Basic Probability

5.4 Conditional Probability

5.4.1 Exercises

5.4.1: (NECTA 2005) A box contains 100 paper clips. 27 of the clips are too large and 16 of
them are too small for the intended work. A paper clip is taken, judged, and not replaced. A
second clip is then treated similarly. Calculate the probability that:
(a) Both paper clips are acceptable for the intended work.
(b) The first paper clip is too large and the second one is too small.
(c) One paper clip is too large and the other is too small. (10 marks)
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5.5 Statistics

Statistics is a very important topic. In university, any science-related field, from medicine
to forestry to engineering, requires a study of statistics. It is also used in business, for both
marketing and quality control. The topics in the BAM syllabus cover just a brief introduction.
It’s a relatively easy topic, and well worth a little bit of time to learn it.

5.5.1 Data

If you ask 10 A-Level students, ‘How old are you?’ you may get responses like these: 18, 19,
20, 19, 23, 21, 18, 21, 21, 20. These are data.

Definition: Data, which can be singular or plural, is a set of observations or measurements of
a certain quality. A single number is a ‘piece of data’ or a ‘datum’.

By themselves, our data is not very useful, so we have several ways to make it more useful.
A frequency distribution table shows, for each data point x, the number of times it occurs, called
its frequency. For example, using the age data above, the frequency distribution table would
be:

Age (x) Frequency (f)
18 2
19 2
20 2
21 3
22 0
23 1

Definition: The sample size is the number of data points, usually written n. The relative
frequency for a certain data point is its frequency f divided by n. If you multiply relative
frequency by 100%, the result is the percent frequency.

If n is not given, an easy way to calculate it is to add all the frequencies. This is abbreviated
Σf = n. The capital Greek letter Sigma (Σ) means sum. For our data above, n = 10, which
we can check by adding the frequencies: Σf = 2 + 2 + 2 + 3 + 0 + 1 = 10. We can add these
columns to our table:

Age Freq Relative Freq Percent Freq
(x) (f) (f/n) (f/n · 100%)
18 2 0.2 20%
19 2 0.2 20%
20 2 0.2 20%
21 3 0.3 30%
22 0 0.0 0%
23 1 0.1 10%

If there is lots of data, it can be too much to put into a frequency distribution table like
this. In this case, we group the data into different classes. A class covers several data points,
and we usually want an equal number of data points in each class. For the ages listed above,
we could make classes such as 18−19, 20−21, and 22−23, where two ages are in each class, or
we could put 18-20 and 21-23, with 3 ages in each class. Here is a diagram for the first option:

Age (x) Frequency (f)
18− 19 4
20− 21 5
22− 23 1

The frequencies just add. This is how we organize our data. There are two main ways we
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analyse data: measures of central tendency and measures of dispersion.

5.5.2 Measures of Central Tendency

Measures of central tendency tell us about the center of data. The three common measures of
central tendency are mean, median, and mode.

Definition: The mean, or average of a data set is the sum of all observations divided by the
total number of observations.

The mean as calculated from data is usually written as x̄. If the true mean is known it can
be written as µ, but in most cases a given mean is based on incomplete data, so x̄ is used. If
there are n data points, called x, then

x̄ =
∑
x

n
,

The mean is the sum of all data points divided by the number of data points. If you are using
a frequency distribution table, then each xi occurs fi times, and n =

∑
fi, the total of the

frequencies is the number of points, so

x̄ =
∑

(xi · fi)∑
fi

Pick an assumed mean A, in columns xi−A — xc = xi−A/cdivide by class size — f — product
xc · f . Then, x̄c =

∑
xc·f∑
f . Decoding, same steps reverse order. Multiply by class size, then add

A.

Definition: The mode of a data set is the value that occurs most often, the data point with the
highest frequency.

It is possible for a data set to have more than one mode.

Definition: The median is the value in the middle when the data is arranged in ascending or
descending order. If there is not a single middle term, then the two terms in the middle are
averaged to calculate the median.

Ex 1: A certain data set is 7, 8, 12, 19, 6, 22, 9. What is the median?
Solution: First we order the data (ascending or descending, both are fine).

6, 7, 8, 9, 12, 19, 22

Then we find the one in the middle: 9 is the median. z

However, if there is an even number of data points we need to average to find the median.

Ex 2: A data set is 3, 7, 2, 3, 9, 6. Find the median.
Solution: Writing it in order:

2, 3, 3, 6, 7, 9

When you find the middle, it’s between 3 and 6, so the median is the average of 3 and 6.

3 + 6
2

= 4.5

The median is 4.5. z

In many cases, the median is the best measure of central tendency for understanding the
data. This is because the mean is heavily influenced by outliers. If a single point if very high
or very low, it can have a big effect on the mean, but almost no effect on the median.
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5.5.3 Measures of Dispersion

Measures of dispersion tell about the distribution of the data. Maybe it is all together, maybe
it is spread out... The two measures of dispersion we will use are range and standard deviation.

Definition: The range of a data set is the difference between the highest and lowest points.

Ex 3: The scores on a certain BAM exam are as follows: 37, 44, 46, 49, 54, 58, 63, 64, 64,
65, 71, 74, 83, 91. What is the range of the scores?

Solution: The highest score is 91, the lowest score is 37, the highest score is 91, so the range
is 91− 37 = 54. z

Definition: The standard deviation of a data set is the average difference from the mean.

To calculate the standard deviation, σ, first you must find the mean, x̄. Then, for every
point, you take it’s distance from the mean, x− x̄, and square it, (x− x̄)2. Add up all of these,∑

(xi − x̄)2, divide by n, and take the square root. The easiest formula is:

σ =

√ ∑
x2
i

n
− (x̄)2

The sum
∑
x2
i is the sum of the squares of all the data points. We divide this by n to get the

average of the squares. Then we subtract the mean squared. Take the square root, and we get
the standard deviation.

The purpose of the squaring is to make all the differences positive. But the end result is the
average distance of a data point to the mean. Thus a large standard deviation tells you that the
data is spread out, and a small standard deviation tells you that the data is all tight together.

Exercises

5.5.1: (NECTA 2008) The following table shows the marks of 100 students at Mzumbe
University.

Marks Frequency
60-62 5
63-65 18
66-68 42
69-71 27
72-74 8

(a) Find the
i. Mean score.
ii. Standard deviation.

(b) Draw the cumulative frequency and hence estimate the median. (10 marks)

5.5.2: (NECTA 2006) You are provided with the following frequency distribution table:

i 1 2 3 4 5
xi 13 14 15 16 17
fi 1 4 12 2 1

(a) Find the value of
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i.
∑5

i=1

(
xifi

)∑5
i=1 fi

ii.

√√√√ ∑5
i=1

(
xi − x̄

)2
fi∑5

i=1 fi
,

where x̄ is your answer in (a) i.
(b) Find the

i. Median of the frequency distribution.
ii. Mode of the frequency distribution. (10 marks)

5.5.3: (NECTA 2005) The terminal marks in a Basic Applied Mathematics examination
obtained by 40 students in one of the secondary schools in Tanzania are as follows:

66, 87, 79, 74, 84, 72, 81, 78, 68, 74,
80, 71, 91, 62, 77, 86, 87, 72, 80, 77,
76, 83, 75, 71, 83, 67, 94, 64, 82, 78,
77, 67, 76, 82, 78, 88, 66, 79, 74, 64.

From above data:
(a) Prepare a frequency distribution table with the lowest class interval of 60-64.
(b) Calculate the mean mark by using the coding method.
(c) Calculate the standard deviation correct to 2 decimal places. (10 marks)

5.5.4: (NECTA 2003) The marks obtained by 2 students in a certain examination were
tabulated as follows:

Marks 50 65 70 75 80 85 90 95
Frequency 4 3 10 4 1 2 1 1

(a) Determine
i. The mean.
ii. The frequency.

(b) Determine the cumulative frequency, then draw an ogive.
(c) Compute the mean and standard deviation to two decimal places of the following distribution
by using the coding method. Take A = 170.

Value 150 155 160 165 170 175 180 185 190
Frequency 5 11 13 17 26 21 9 5 3

(10 marks)

5.5.5: (NECTA 2002) The following table summarises the masses measured to the nearest
kg of 200 animals of the same species:

Mass (kg) Number of animals
75-79 7
80-84 30
85-89 66
90-94 57
95-99 27

100-104 13
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Calculate:
(a) The mean using a deviation approach. (b) The standard deviation of masses correct to two
decimal places. (10 marks)

5.5.6: (NECTA 2001) Consider the following distribution table:

Class Mark 7 12 17 22 27 32
Frequency 4 9 16 22 6 3

Determine
(a) The mean. (b) The mode. (c) The median.

(6 marks)

5.5.7: (NECTA 2000) The table below shows the IQs of 480 children at a certain school.

IQ 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126
No. of Children 4 9 16 28 45 66 y 72 54 38 27 18 11 5 2

(a) Find the value of y.
(b) Calculate the mean and standard deviation using an assumed mean A = 94. (6 marks)



Chapter 6

Miscellaneous Other Topics

The topics in this chapter are mostly unrelated to each other. They can be studied individually
at most any time in the course.

6.1
√

Roots of Quadratics

A polynomial P (x) has roots. The roots are the values of x for which P (x) = 0. In the case of
quadratics, you know very well how to find the roots by either factoring or using the quadratic
formula.

Definition: The roots of a polynomial P (x) are the values of x for which P (x) = 0. They are
the solutions of the equation P (x) = 0.

A polynomial of degree n has at most n different, real roots. Remember that the degree of
a polynomial is the biggest exponent of x. We will look closely at quadratics. The focus of this
section is learning about the roots without actually solving for them.

6.1.1 Real Roots and the Quadratic Formula

When we are dealing with real numbers (R), we cannot take the square root of a negative
number. (If you continue in math beyond BAM, you will learn about complex numbers, C,
where you can take square roots of negatives.) A quadratic ax2 + bx+ c = 0 has roots given by
the quadratic equation:

x =
−b±

√
b2 − 4ac

2a
,

thus its roots are real if and only if
b2 − 4ac ≥ 0.

If b2 − 4ac < 0, then there are no real roots.

There are roots, but they are complex, not real.

Ex 1: Show that x2 + 1 = 0 has no real roots.
Solution: We use the quadratic formula with a = 1, b = 0, and c = 1.

b2 − 4ac = 0− 4 · 1 · 1 = −4 < 0

Thus x2 + 1 has no real roots. z

106
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6.1.2 Manipulating Roots

Regardless of whether the roots of a quadratic are real of complex, we can still learn some things
about them, and even construct equations with similar roots.

A polynomial with roots α and β may be written and expanded as

(x− α)(x− β) = 0

x2 − αx− βx+ αβ = 0

x2 − (α+ β)x+ αβ = 0

So, if we take a general quadratic, ax2 + bx + c, and call the roots α and β, then we can say
that

ax2 + bx+ c = 0 which can be written as

x2 +
b

a
x+

c

a
= 0

x2 − (α+ β)x+ αβ = 0

〉
These are the same!

So, matching up the corresponding parts,

α+ β = − b
a

and αβ =
c

a

This is big information, and this one line is all you need to remember to be able to solve most
problems.

Ex 2: The roots of 3x2 + 4x− 5 = 0 are α and β. Find the values of (a) 1/α+ 1/β, and (b)
α2 + β2.
Solution: It is a puzzle. We don’t know α or β, but we do know α + β and αβ. We want to

write 1/α+ 1/β and α2 + β2 in terms of what we know. Starting with part (a):

1/α+ 1/β =
β

αβ
+

α

αβ
Finding a common denominator

=
α+ β

αβ
Adding the fractions

=
−b/a
c/a

Substituting in what we know

=
−b
c

Simplifying

This is all done in general. Now that we have a general answer, 1/α + 1/β = −b
c ,

we can substitute in the values of b and c from the quadratic given in the problem,
3x2 + 4x− 5 = 0. We see that b = 4 and c = −5, so 1/α+ 1/β = −b

c = −4
−5 = 4

5 .
Now on to part (b). Our method is the same. We know α+β and αβ, we want to write α2 +β2

in terms of what we know.

α2 + β2 = α2 + β2 + 2αβ − 2αβ This is a neat trick

= α2 + 2αβ + β2 − 2αβ Because (a+ b)2 = a2 + 2ab+ b2

= (α+ β)2 − 2αβ Isn’t that cool?

= (−b/a)2 − 2(c/a) Substituting in what we know

=
b2

a2
− 2

c

a
Simplifying
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And, like before, now that we are done with variables we can substitute in our values a = 3,
b = 4, and c = −5. Thus

α2 + β2 =
b2

a2
− 2

c

a
=

42

32
− 2
−5
3

=
16
9

+
10
3

=
46
9
.

z

This is the most common style of problem you will see on this topic. The procedure is
always the same. First, using the variables α and β, find a way to write what you want to know
in terms of what you know. Then substitute in to get the answer.

Ex 3: The roots of 2x2 − 7x + 4 = 0 are α and β. Find an equation with integer coefficients
whose roots are α/β and β/α.
Solution: We don’t need to find α/β and β/α, rather what we need is the equation x2− ( αβ +

β
α )x+ α

β
β
α = x2 − ( αβ + β

α )x+ 1. So, really all we need is α
β + β

α .

α/β + β/α =
α2

αβ
+

β2

αβ
Finding a common denominator

=
α2 + β2

αβ
Adding the fractions

=
α2 + β2 + 2αβ − 2αβ

αβ
Using the same trick as in part (b) above.

=
(α+ β)2 − 2αβ

αβ
It’s a very useful trick.

We know that α+β = −−7
2 = 7

2 and that αβ = 4
2 = 2. Thus α/β+β/α = ( 7

2
)2−2·2

2 = 33
8 .

And now our equation is x2 + 33
8 x+ 1 = 0. Unfortunately this doesn’t have integer coefficients!

But, if we multiply through by 8, then we get 8x2 + 33x+ 8 = 0, which does.
Note: We can multiply by any constant without changing the roots. We used 8 here because it
is the easiest, but other answers like 16x2 + 66x+ 16 = 0 and 24x2 + 99x+ 24 = 0 are just fine
too. z

Exercises

6.1.1: (NECTA 2002) Show that 2x2 − 3x+ 4 = 0 has no real roots. (2 marks)

6.1.2: (NECTA 2002) If 3x2 − 6x+ 8 = 0 has roots α and β, find the equation whose roots
are 1/α and 1/β. (4 marks)

6.1.3: (NECTA 2003) Given that α and β are roots of the function f(x) = ax2 + bx + c,
where a, b, and c are real and a 6= 0, (a) write down the values of α+ β and αβ in terms of a,
b, and c. (b) State the conditions that the roots α and β in (a) above are equal in magnitude
but opposite in sign. (2 marks)

6.2 Linear Programming

Linear Programming is a technique used to decide what is the best way to act in certain types
of situations. Linear programming can be used when we are choosing values of several variables,
subject to linear constraints, and our goal is to maximize or minimize a linear function of those
variables, called a metric. Lets consider an example so that we can see what this means.
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Ex 1: A school is trying to plan meals for its students. A student requires 20g of protein and
200g of carbohydrates each day to be healthy. The school will feed the students beans and rice.
Beans contain 360g of protein and 400g of carbohydrates per kilogram. Rice contains 10g of
protein and 900g of carbohydrates per kilogram. Beans cost 1400/= per kilogram, and rice costs
1000/= per kilogram. What quantity of beans and of rice should the school give to each student
in order to feed them adequate food for the lowest cost?

Solution:
In this problem, we are choosing values of two variables. Our two variables are the quantity
of beans and the quantity of rice to give each student. These variables are subject to linear
constraints, because the total amount of protein (which is a linear function of the two variables,
quantity of beans and quantity of rice) must be above a certain level, and the total amount of
carbohydrates (also a linear function of our two variables) must be above a certain level as well.
Finally, our goal is to minimize the total cost, which is a linear function of our variables. So we
see that this is the sort of problem that linear programming can be used to solve.
Linear programming questions are usually presented like this, as a paragraph of writing. Once
we’ve identified it as a problem that we can use linear programming to solve, our first task is
to identify our variables, our constraints, and our metric.

Identify the variables
Let us call our two variables B, for the quantity of beans given to each student, and R, for the
quantity of rice given to each student. Our variables have now been identified.

Identify the constraints
We have been told that each student needs 20g of protein a day. How much protein does each
student receive? A kilogram of beans contains 150g of protein. So if a student receives B kilo-
grams of beans, she receives B ·360g of protein from beans. Likewise, if she receives R kilograms
of rice, she receives R ·10g of protein from rice. Her total protein is then B ·360g+R ·10g. This
must be at least 20g, so we have one of our constraints B · 360g +R · 10g ≥ 20g. Similarly, the
students receives 400g of carbohydrates for each kilogram of beans and 900g of carbohydrates
for each kilogram of rice. Thus we have a second constraint that B · 400g + R · 900g ≥ 200g.
We should also add that B ≥ 0 and R ≥ 0, as it is not possible for a student to eat a negative
quantity of food. We have now identified our four constrains. Note that these four constraints
are all linear constraints. That is to say that each variable can by multiplied by a constant
factor, but never squared, logged, multiplied by another variable, or anything like that. If our
constraints are not linear constraints, we will not be able to use linear programming to solve
the problem.

Identify the metric
Finally, let’s consider our metric. We want to minimize the amount of money spent. The
amount of money spent on beans will be B · 1400/ = and on rice R · 1000/ =. Thus, the total
amount of money spent per student will be B ·1400/ = +R ·1000/ =. We want to minimize this
number. Thus, we have identified our metric. Note that this is a linear metric. If our metric is
not linear, we can’t use linear programming to solve the problem.

Draw a sketch
Let’s draw a quick sketch to better understand our constraints. We draw a pair of axes using
our two variables, B and R. Our first constraint is B · 150g + R · 50g ≥ 20g. We draw the line
B · 360g + R · 10g = 20g, and shade in the region below. This shaded region does not satisfy
our constraint, and thus none of the points in this region is a possible solution. Next we draw
the line B · 400g + R · 900g = 200g and shade the region below that for our second constraint.
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We also draw the line B = 0 and shade the region to its left, and the line R = 0 and shade the
region below it. We can now see the remaining region of allowable solutions. In this case, it’s
in the upper right-hand part of our sketch.

Find the corners
The secret to linear programming problems is that the best solution is always a corner of the
boundary of allowable solutions. In this case, there are three corners. One is where the B
axis intersects the first constraint (point A in our sketch). One is where the second constraint
intersects the R axis (point B in our sketch). One is where the first and second constraints
intersect each other (point C in our sketch). Note that there points D and E are outside of the
region of allowable solutions, so we can ignore them. Solving for the locations of these points,
we find:
Point A

B · 360g +R · 10g = 20g First constraint
B = 0 Third constraint

0 · 360g +R · 10g = 20g Substituting the 3rd constraint into the 1st

R =
20g
10g

Solving

(B,R) = (0, 2) Point A

Point B

B · 400g +R · 900g = 200g Second constraint
R = 0 Fourth constraint

B · 400g + 0 · 900g = 200g Substituting the 4th constraint into the 2nd

B =
200g
400g

Solving

(B,R) = (0.5, 0) Point B

Point C

B · 400g +R · 900g = 200g Second constraint
B · 3600 +R · 8100g = 1800g Second constrain times 9
B · 360g +R · 10g = 20g First constraint

B · 3600g +R · 100g = 200g 1st constraint times 10
B · 0g +R · 8000g = 1600g 9 times 2nd minus 10 times 1st

R · 8000g = 1600g
R = 0.2

B · 360g + 0.2 · 10g = 20g Substituting R into 1st constraint
B · 360g = 18g

B =
18g
360g

B = 0.05
(B,R) = (0.05, 0.2) Point C
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Evaluate the Metric at Each Corner
Because in linear programming problems the best solution is always a corner of the boundary,
we know that the best solution is either point A, B, or C. So we calculate our metric at each
of these points. At point A, B = 0 and R = 2; A represents 2 kilograms of rice and no beans.
The cost of this is B · 1400/ = +R · 1000/ =, or 2000/=. At point B, B is 0.5 and R is 0; B
represents 0.5 kilograms of beans and no rice. The cost of this is 700/=. At point C, B is 0.05
and R is 0.2; C represents 50g of beans and 200g of rice. The cost of this is 270/=. We see
that point A has a cost of 2000/=, point B of 700/=, and point C of 270/=. As our goal is to
minimize the cost, we choose point C. z

Exercises

6.2.1: A smuggler is transporting two types of supplies to a black-market purchaser: plutonium
and human kidneys. He is riding his bicycle. If the mass of plutonium exceeds 10kg the
plutonium will melt down, which is unsafe. The kidneys must be stored in a special cooler and
rushed to the purchaser at high speed or they will spoil. The cooler can hold 10kg of kidneys.
If the total mass of the supplies exceeds 15kg the smuggler will not be able to ride his bicycle
fast enough, and the kidneys will spoil. If the smuggler can earn a profit of 10,000 euros per kg
of plutonium, and 15,000 euros per kg of kidneys, what is his maximum profit?

6.2.2: A certain daladala can take two kinds of passengers. Mamas weigh 100kg, carry 10kg
luggage, and pay 500/=. Students weigh 50kg, carry 20kg luggage, and pay only 400/=. All
passengers sit in the vehicle and all luggage is strapped to the roof. If the total weight in the
vehicle exceeds 2500kg, the floor of the daladala will collapse on the highway, killing everyone.
If the total weight on the roof exceeds 500kg, the roof will collapse, killing everyone. If the total
number of passengers exceeds 30, they will riot and kill the driver and the conductor. How
many of each type of passenger should the conductor choose to maximize his profit without
dying?

6.2.3: A safari company offers two kinds of safaris, driving and walking safaris. A driving safari
requires a car and one employee to drive. A walking safari requires two employees, one guide
and one porter to carry lunch boxes. The guide must be armed with a rifle so that the tourists
won’t be too afraid of animals. The company earns a profit of 30,000/= for each driving safari
and 80,000/= for each walking safari. If the company has 6 cars, 6 rifles, and 16 employees,
what is the maximum profit it can earn?

6.2.4: A student calculates that each cup of tea that she drinks immediately before her exam
will improve his score by 3 marks, and each cup of coffee she drinks before her exam will improve
her score by 5 marks. Each cup of tea has 60g sugar and 40mg caffeine. Each cup of coffee has
20g sugar and 80mg caffeine. If the student consumes more than 240g of sugar, she will go into
diabetic shock and fail her exam. If the student consumes more than 400mg of caffeine, she will
suffer from heart palpitations and fail her exam. If the student consumes more than 6 cups of
fluid total her bladder will rupture and she will fail her exam. How many cups of each coffee
and tea should she drink to maximize her score?

6.2.5: An mchawi is payed by clients to put curses on victims. A Jealous Wife will pay
40,000/= to have her Cheating Husband made impotent. This requires 15g of Albino Eye,
20g of Little Child Brain, and 1 cauldron. A Frustrated Teacher will pay 50,000/= to have a
NECTA Employee turned into a slug. This requires 5g of Albino Eye, 40g of Little Child Brain,
and 1 cauldron. The mchawi has only 120 g of Albino Eye , 320g of Little Child Brain, and 10
cauldrons. What is the maximum amount of money he can earn?

6.2.6: (NECTA 2008) A firm makes two types of furniture: chairs and tables. The contribu-
tion of each product as calculated by the accounting department is 20/= and 30/= per chair
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and per table, respectively. Both products are processed on three machines M1, M2, and M3.
The time required in hours per week on each machine is as follows (see table). How should the

Machine Chair Table Available Time
M1 3 3 36
M2 5 2 50
M3 2 6 60

manufacturer schedule his production in order to maximize contribution? (10 marks)

6.2.7: (NECTA 2006) A certain farmer wants to use part of his shamba to plant cabbages
and potatoes. He divides that part of his shamba into several equal-sized portions. The farming
of cabbages will cost Sh. 24,000 per portion, and potatoes 8,000 per portion. The maximum
(note: the original question says ‘minimum’ here, but that makes no sense. Corrected to
‘maximum’ by author.) funds which can be used in farming the two crops are Sh. 240,000.
Cabbages require 10 man hours per portion, while potatoes require 200 man hours per portion.
The estimated profit is Sh. 16,000 per portion of cabbages and Sh. 12,000 per portion of
potatoes.
(a) How should he allocate the expected shamba for maximum profit?
(b) What is the maximum profit? (10 marks)

6.2.8: (NECTA 2005) A person requires 10, 12, and 12 units of mineral elements A, B, and
C, respectively, for her diet. A liquid diet contains 5, 2, and 1 units of A, B, and C, respectively,
per can; and a dry diet contains 1, 2, and 4 units of A, B, and C, respectively, per carton. If
the liquid diet is sold at the price of Sh. 3,000 per can and the dry diet is sold at the price of
Sh. 2,000 per carton, how many cans and cartons should a person purchase to minimize the
costs and meet the dietary requirements? (10 marks)

6.2.9: (NECTA 2003) By shading the unrequired part, show the region represented by the
following set of inequalities:

y ≤ 2x, x+ y ≤ 6, x+ y ≥ 3, y ≥ 0, x ≥ 0, x ≤ 5.

(4 marks)

6.2.10: (NECTA 2003) (a) Shade the unrequired region of the following inequalities:

2x+ y ≤ 10
4x+ 3y ≤ 24

x ≥ 0
y ≥ 0

(b) Find the maximum value of f(x, y) = 2x+4y in the reqion required in (a) above. (7 marks)

6.2.11: (NECTA 2002) Students are about to take a test that contains questions of type A
worth 10 points and questions of type B worth 25 points. They must do at least 3 questions of
type A but not more than 12. They must do at least 4 questions of type B but not more than
15. In total they cannot do more than 20 questions. How many of each type of question must
a student do to maximize the score? What is the maximum score? (10 marks)

6.2.12: (NECTA 2001) Graph the feasible set for the system of inequalities:

x ≥ 0
y ≥ 0

x+ 2y ≤ 4
4x− 4y ≥ −4
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(3 marks)

6.3 Sequences1 and2 Series3

Definition: A sequence is a list—a set with a certain order—that follows a rule or pattern.

Definition: A series is a sequence where the terms are added together.

For example, a good sequence is

1,
1
2
,

1
3
,

1
4
,

1
5
, . . .

and its corresponding series is

1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·

This particular series is called the Harmonic Series.

Ex 1: Find the rules for the following sequences:
(a) 1, 2, 3, 4, . . .
(b) 2, 4, 6, 8, . . .
(c) 1, 3, 9, 27, . . .

Solution: (a) The rule is to add 1 each time.
(b) The rule is to add 2 each time.
(c) The rule is to multiply by 3 each time. z

Can you find the rules to these sequences?
1, 1, 2, 3, 5, 8, 13, . . .
M, M, T, N, T, S, S,. . .

Take a minute and really try before reading on to the answer. They will seem very clear when
you learn the rule. Can you find the next term yourself?

The first sequence is called the Fibonacci Sequence. The first two terms are 1, and then each
term is the sum of the previous two. 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, 5 + 8 = 13,
so the next term is 21 because 8 + 13 = 21. The second sequence is a puzzle. Think about it,
maybe you will find the answer. I will tell you that, if you find the answer, you will have no
doubt, bila shaka, that your answer is correct.

Sometimes the rule is obvious, sometimes it isn’t. Mostly we will deal with sequences that
have easy rules. They come in two types: Arithmetic Progressions and Geometric Progressions.
•NoteOn Notation •
We use the Greek capital letter sigma, Σ, to indicate a sum. Usually it will look something like
this:

a1 + a2 + a3 + · · ·+ an =
n∑
i=1

ai,

the right-hand side is read ‘the sum from i=1 to i = n of Ai.

Ex 2: Write (a) a1 + a2 + a3 + a4 + a5, and (b) a23 + a24 + a25 + · · · + a100 in sigma sum
notation.
Solution: (a)

a1 + a2 + a3 + a4 + a5

5∑
i=1

ai
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(b)

a23 + a24 + a25 + · · ·+ a100

100∑
i=23

ai

z

Definition: An arithmetic progression (A.P.) is a sequence where there is a common difference
between successive terms.

If the common difference is d, then we can write

an+1 = an + d,

which means that if you have a term an, to find the next term, you add d. If the first term is
a1, then the sequence is

a1, a1 + d, a1 + 2d, a1 + 3d, . . .

and the nth term is given by
an = a1 + (n− 1)d.

The formula is (n-1) because the 1st term is a1 + 0d, the 2nd term is a1 + 1d, the 3rd term is
a1 + 2d, etc.

The sum of the first n terms of an A.P. is given by

Sn =
n∑
i=1

ai =
n

2
(
a1 + an

)
.

If we substitute in an = a1 + (n− 1)d from above, this becomes

Sn =
n∑
i=1

ai =
n

2
[
2a1 + (n− 1)d

]
.

Notice for the series 1 + 2 + 3 + · · ·+ n that a1 = 1, d = 1, so Sn = n(n+ 1)/2.

Ex 3: Identify the first term, a1, the common difference d, and find the sum of the first 10
terms for the following sequences:

(a) 1, 2, 3, 4, . . .
(b) 7, 4, 1,−2, . . .

Solution: (a) The first term a1 = 1, the common difference is 1, so the sum of the first 10
terms is given by

S10 =
n

2
[
2a1 + (n− 1)d

]
=

10
2
[
2 · 1 + (10− 1) · 1

]
= 55.

(b) The first term a1 = 7, the common difference is −3, so the sum of the first 10 terms
is

S10 =
n

2
[
2a1 + (n− 1)d

]
=

10
2
[
2 · 7 + (10− 1) · (−3)

]
= −65.

z

Ex 4: An arithmetic progression has first term 3 and 14th term 55. Find the common difference
and the sum of the first 14 terms.
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Solution: First we’ll find the common difference, d. What we know is that a1 = 3 and a14 = 55.
But we also know that a14 = a1 + (14− 1)d. Thus

a14 = a1 + (14− 1)d (6.1)
55 = 3 + 13d (6.2)
52 = 13d (6.3)
d = 4 (6.4)

As for the sum, we don’t even need to know d.

S14 =
14
2

(a1 + a14)

= 7(3 + 55)
= 406

z
Definition: A geometric progression (G.P.) is a sequence where there is a common ration
between successive terms.

If the common ratio is r, then
an+1 = ran,

to find the next term, just multiply by r. If the first term is a1, then the sequence is

a1, ra1, r
2a1, r

3a1, . . .

and the nth term is given by
an = rn−1a1.

The sum of the first n terms of a G.P. is given by

Sn =
n∑
i=1

ai = a1
1− rn

1− r

for any r 6= 1. (If r = 1 then the sequence is a1, a1, a1, . . . , and the series a1+a1+· · ·+an = na1.)

Ex 5: Identify the first term, a1, the common ratio r, and find the sum of the first 10 terms
for the following sequences:

(a) 2, 6, 18, 54, . . .
(b) 1/2, 1/4, 1/8, 1/16, . . .

Solution: (a) The first term is a1 = 2, the common ratio r = 3, so the sum for the first 10
terms:

Sn = a1
1− rn

1− r
= 2

1− 310

1− 3
= 2

1− 59049
−2

= 59048

(b) The first term a1 = 1/2, the common ration is r = 1/2, so the sum is:

S10 =
1
2
· 1− (1/2)10

1− (1/2)
= 1−

(
1
2

)10

= 1− 1
1024

= 0.99902348

z

Definition: Some geometric series are convergent, if we take the limit as n→∞, we will get
a real number. Others are divergent, they do not approach any specific value.

A geometric series with common ratio r is convergent if |r| < 1. If |r| ≥ 1 then the series is
divergent. If geometric series is convergent, then its sum is

∞∑
i=1

ai =
a

1− r
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Exercises

6.3.1: (NECTA 2005) The sum of the first and fifth terms of an arithmetic progression is 18,
while the fifth term is 6 more than the third term. Find the sum of the first 10 terms. (3 marks)

6.3.2: (NECTA 2005) A biscuit factory starts producing biscuits at the rate of 50,000 per
hour. This rate decreases by 10% every hour. Calculate the total number of biscuits produced
in the first 3 hours. (3 marks)

6.3.3: (NECTA 2001) The 9th term of an A.P. is twice as great as the third term, and the
15th term is 27. Find the sum of the first 25 terms of the series. (4 marks)

6.3.4: (NECTA 2001) Find the seventh term of an A.P. whose first term, second term, and
fifth term are in a G.P. and whose first term is 2. (2 marks)

6.3.5: (NECTA 2001) Show that log3 x+log9 x+log81 x+ . . . is a geometric progression with
a common ration of 1/2. (3 marks)

6.3.6: (NECTA 2000) In a geometrical progression the common ration is 2. Find the value
of n for which the sum of 2n terms is 33 times the sum of n terms. (2 marks)

6.3.7: (NECTA 2000) The first term of an A.P. is −12 and the last term is 40. If the sum of
the progression is 196, find the number of terms and the common ratio. (2 marks)
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6.4 Pascal’s Triangle

Pascal’s Triangle is like a magic trick. It is also very ‘deep,’ it shows how different topics are
connected. It really is just a kind of series, but it connects probability with algebra, and has
other applications as well.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

etc.

The start and end of each row is a 1. For the middle of a row, each number is the sum of the
two numbers above it. For example, the row after 1 3 3 1 begins with 1, then the next number
is 1 + 3 = 4, then 3 + 3 = 6, then 3 + 1 = 4, and it ends with 1.

Now, let’s look at (a+ b)n.

(a+ b)0 = 1 n = 0

(a+ b)1 = 1a+1b n = 1

(a+ b)2 = 1a2 + 2ab+ 1b2 n = 2

(a+ b)3 = 1a3 + 3a2b+3ab2 + 1b3 n = 3

(a+ b)4 = 1a4 + 4a3b+ 6a2b2 + 4ab3 + 1b4 n = 4

(a+ b)5 = 1a5 + 5a4b+ 10a3b2+10a2b3 + 5ab4 + 1b5 n = 5

(a+ b)6 = 1a6 + 6a5b+ 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + 1b6 n = 6

And last, we’ll look at nCr, the choosing function from probability.

0C0 = 1 n = 0
1C0,

1C1 = 1, 1 n = 1
2C0,

2C1,
2C2 = 1, 2, 1 n = 2

3C0,
3C1,

3C2,
3C3 = 1, 3, 3, 1 n = 3

4C0,
4C1,

4C2,
4C3,

4C4 = 1, 4, 6, 4, 1 n = 4
5C0,

5C1,
5C2,

5C3,
5C4,

5C5 = 1, 5, 10, 10, 5, 1, n = 5
6C0,

6C1,
6C2,

6C3,
6C4,

6C5,
6C6 = 1, 6, 15, 20, 15, 6, 1 n = 6

Look at these until you see the pattern. The pattern is stated kwa kihisabati as the Binomial
Expansion Theorem:

(a+ b)n =
n∑
i=0

(n
Cia

n−ibi
)
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Basically, it says that you take the numbers from Pascal’s Triangle as the coefficients and that
the powers of a are n, n− 1, n− 2, . . . 0, and the powers of b are 0, 1, 2, . . . n.

Ex 1: Write the binomial expansion of (x+ 3)5

Solution: From Pascal’s Triangle, we see that the coefficients are 1, 5, 10, 10, 5, 1. (Note:
you can always know you are on the correct row because the second coefficient is the
exponent n. Here, we have (x+ 3)5, and the second coefficient is 5, so it’s good!) We’ll
use descending powers of x, so the powers of x will decrease and the powers of 3 will
increase:

(x+ 3)5 =

= 1x5 · 30 + 5x4 · 31 + 10x3 · 32 + 10x2 · 33 + 5x1 · 34

+ 1x0 · 35x5 + 15x4 + 90x3 + 270x2 + 405x+ 243

z

Ex 2: Write out the binomial expansion of (1 − x)7 in ascending powers of x until the term
with x3. Then approximate 0.987.
Solution: Once again, we look to Pascal’s Triangle for the coefficients. The row that has 7 in

it goes 1, 7, : 21, 35, . . ., and that will be enough because we only need to go until x3.
Because of the minus x, we will treat it as (1 + (−x))7.

(1− x)7 =

= 1 · 17 · (−x)0 + 7 · 16 · (−x)1 + 21 · 15 · (−x)2 + 35 · 14 · (−x)3 + · · ·
= 1− 7x+ 21x2 − 35x3 + · · ·

Then, to approximate (0.98)7, we see that 0.98 = 1− 0.02. So we put in 0.02 for x, and
we get that

0.985 = (1− 0.02)7

≈ 1− 7(0.02) + 21(0.02)2 − 35(0.02)3 + · · ·
≈

z

Exercises

6.4.1: Write out Pascal’s Triangle until the line that begins ‘1 8 28 . . .’.

6.4.2: Write the binomial expansions for the following:
(a) (a+ b)6

(b) (1 + x)6

(c) (1− x)6

6.4.3: Write the first 4 terms of the binomial expansion of (1 + x)7 in ascending powers of x.
Hence approximate (1.1)7 correct to 3 significant figures.

6.4.4: (NECTA 2003) Expand (x − 1)5 in ascending powers of x up to the term x3, hence
use the expansion to evaluate (0.95)5 to three significant figures. Note: This does not work. Do
not use (x− 1)5; instead use (1− x)5. (2 marks)

6.4.5: (NECTA 2001) Write the first 3 terms of the binomial expansion of (1 + x)6. Hence
approximate (1.001)6 correct to 4 significant figures. (2 marks)
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6.5 Set Theory

Definition: A set is a group of items, called elements. A set has no order.

The elements of a set are written inside curly braces: { }. Sets are usually called with
capital letters, like A or B. Sets can have numbers or anything else for elements.

Definition: The cardinality of a set is the number of elements. The cardinality of a set A is
written as |A| or as n(A).

Examples of sets include: A = {1, 2, 3, 4}, B = {x : x > 0}, and C = {1,Elephant,♥}. In
these cases, |A| = 4, |B| is infinite, and |C| = 2.

The symbol ∈ means ‘in,’ and /∈ means ‘not in.’ For example, using A above, we could say
1 ∈ A, 1 is in A, but 6 /∈ A, 6 is not in A.

Definition: The union of 2 sets is a set that includes all elements that are in either of the 2
sets.

Union is written as ∪. For example, if A = {1, 2, 3, 4} and B = {3, 4, 5, 6}, then

A ∪B = {1, 2, 3, 4, 5, 6}.

Definition: The intersect of 2 sets is a set that includes all elements that are in both of the 2
sets.

Intersect is written as ∩. Using the same A = {1, 2, 3} and B = {3, 4, 5},

A ∩B = {3, 4}.

A useful formula for cardinality is:

|A ∪B| = |A|+ |B| − |A ∩B|

Ex 1: If 12 students say they like Fiddy Q, and 7 students say they like Banana, and there are
15 students total, how many like both Fiddy Q and Banana?
Solution: We let A be the set of students who like Fiddy Q, and B be the set of students who

like Banana. The data tells us that the total number of students, |A∪B| = 15, and what
we want to find is the number of students who like both Fiddy Q and Banana, |A ∩B|.

|A ∪B| = |A| = |B| − |A ∩B|
15 = 12 + 7− |A ∩B|
15 = 19− |A ∩B||A ∩B| = 4

4 students like both Fiddy Q and Banana. z

Definition: The null set or empty set is the set with no elements. It is written as ∅.

If C = {1, 2, 3} and D = {4, 5, 6}, then C ∩D = ∅.

Definition: The complement of a set is everything not in the set.

The complement of A is written as AC or A′.
De Morgan’s Laws:

(A ∩B)′ = A′ ∪B′ and (A ∪B)′ = A′ ∩B′

Distributive Laws also hold:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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Exercises

6.5.1: (NECTA 2002) In a certain school, there is an equal number of boy and girl students.
1/4 of the boys and 1/10 of the girls go to school on foot. 1/3 of the boys and 1/2 of the girls
go to school by bicycle, and the rest go by daladala. Find the proportion of students:
(a) That are girls who go by daladala.
(b) That go by daladala. (10 marks)

6.5.2: (NECTA 2001) 64 Students were questioned about their favourite subject from Geog-
raphy, Mathematics, and Chemistry. 40 liked Geography, 36 like Mathematics, 30 liked Chem-
istry, and 10 liked all three subjects. If 4 liked both Geography and Mathematics, and assuming
that each student liked at least one subject, how many liked Chemistry only? (2 marks)

6.5.3: (NECTA 2001) Draw a Venn diagram and shade the portion corresponding to the set

(S ∩ T ′) ∪ (S ∩ T )

(2 marks)

6.5.4: (NECTA 2000) By using set operations, simplify the following (A ∪ B)′ ∩ (A ∩ B)′.
(2 marks)

6.5.5: (NECTA 2000) Out of 130 students of a certain school, 10 of them study economics
and mathematics while 20 study neither of these two subjects. Those who study economics
alone are three times as many as those who study mathematics only. How many students study
economics? (4 marks)

6.6 Interest and Exponential Functions

Often, when you put money in a bank, or if you borrow money from a bank, there is interest.
The interest (hopefully) makes up for inflation, and can make it nice for whoever is getting it.

Definition: In a loan or bank deposit, the principle is the initial amount of money. The
principle is the starting amount.
The amount is the current amount of money.
The interest rate is a percentage per time. Usually the annual rate is given, meaning per 1
year. In simple interest, the interest rate is the percentage of the principal that is added to the
amount. For compound interest, the interest rate is the percentage of amount that is added to
the amount.

For simple interest, only the principal earns interest. Thus the amount A = P +Pni where
P is the principle, i is the interest as a decimal, not a percentage, and n is the number of interest
time periods that have passed. This can be simplified as:

Simple Interest : A = P (1 + in)

Ex 1: You take out a loan of 600, 000/ = for 2 years at 8% annual simple interest. After these
2 years, how much do you need to pay the bank?
Solution: ‘Annual’ means 1 time per year. (Semi-annual means 2 times per year, because

‘semi’ means half.) Thus P = 600, 000, and expressing the interest rate as a decimal we
get i = 0.08, and after 2 years means n = 2. Therefore

A = P (1 + in)
= 600, 000(1 + 0.08 · 2) = 696, 000
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You will owe the bank 696,000/=. z

Simple interest pays only on the principle. It is usually used only for very short-term loans.
Much more common is compound interest, where the interest already earned also earns interest.

For compound interest is often described at an annual rate, which we call i like before, but
it is calculated several times per year. The following formula is good for compound interest:

Compound Interest : A = P

(
1 +

i

m

)mt
where m is the number of times it is compounded per year, t is the number of years, i is the
annual interest rate as a decimal (not percentage!), P is the principle, and A is the amount.

Ex 2: You take out the same loan of 600, 000/ = for 2 years at another bank. At this one you
must pay 8% annual interest which is compounded 4 times per year. After 2 years, how much
do you owe the bank?
Solution:

A = P

(
1 +

i

m

)mt
= 600, 000

(
1 +

0.08
4

)4·2
= 702, 996

You will owe the bank 702,996/=. z

Then, there is continuously compounded interest. In this case, the we take the limit as m
approaches ∞. This introduces e to the equation, because one definition of e is

e = lim
x→∞

(
1 +

1
x

)x
We get the formula:

Contiuously Compounded Interest : A = Peit

Ex 3: You take the same 600,000/= loan for two years, this time the interest rate is 8%
continuously compounded. After 2 years, how much money do you owe the bank?
Solution:

A = Peit

= 600, 000 · e0.08·2

= 704, 107

You owe the bank 704,107/=. z

With compound interest, amounts can get very big, very fast. Albert Einstein even said
‘Compound interest is the most powerful force in the Universe.’ This is how credit card com-
panies make money. They give you a card, and you can buy things with it, and the company
pays for the things. Then, at the end of the month they send you a bill. It is very nice because
you can buy so many things and you do not need to pay until the end of the month. But then,
if you are late in paying, they charge you interest. Often very high interest, maybe 15% for the
first month, and if you still cannot pay, maybe 30% for the next month. And it is compound
interest. And very soon you owe lots of money. So a credit card is a very nice thing, if you pay
your bill on time. If you are late with the bill, you will lose all your money.

Many things have exponential functions, in physics, in chemistry, in biology, and as the
interest examples have already shown, in economics. An exponential function is anything that
has e with an exponent. Examples in physics include the radioactive decay equation, N =
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Noe
−λt, where N is the amount of radioactive isotopes remaining, No is the original amount,

t is time, and λ is the decay constant. Or, for absorption of x-rays, used both in physics and
medicine, I = Ioe

−µx, where Io is the intensity of x-rays that hit a body, I is the intensity of
the rays after passing through the body, µ is a constant that depends on the material, called
the absorption coefficient, and x is the thickness of the material. In physiology, Y = Yoe

−kt can
be the concentration of some medicine in the bloodstream at time t, where Yo is the original
concentration and k is a constant related to how efficiently the organs are cleaning the blood.

The interesting thing about exponential functions is that, if they are decreasing, there is a
time called the ‘half-life’, which is constant, and after every half-life the amount is cut in half.
(In the case of x-ray absorption it is a half-distance, a length, not a time.) If the function is
increasing, then there is a doubling time, which is also constant. We will use the example of
radioactive decay.

Ex 4: Find the radioactive half-life of an isotope in terms of its decay constant λ.
Solution: We start with the radioactive decay equation,

N = Noe
−λt

And then we think. After one half-life, the amount remaining N should be half of the
original amount. N = 1

2 No. Thus

1
2
No = Noe

−λt

1
2

= e−λt

ln
1
2

= −λt Applying natural log to both sides,

− ln
1
2

= λt

ln 2 = λt Because
(

1
2

)−1

= 2,

ln 2
λ

= t

Using a calculator, you can find that ln 2 ≈ 0.69315. z

6.6.1 Exercises

6.6.1: You invest 300, 000/ = in a bank that will pay you 10% compound interest. After 5
years, how much money will you have
(a) If the interest is compounded annually (once per year)?
(b) If the interest is compounded quarterly (4 times per year)?
(c) If the interest is compounded monthly (12 times per year)?

6.6.2: You have a credit card, and you buy a pikipiki for 800, 000/ =. Unfortunately, at the
end of the month, you can pay only 600, 000/ =, so you still owe the credit card company
200, 000/ = (this is the principle). On this debt, they charge you 15% monthly (not annual)
interest, compounded 2 times per month. After 2 months of this, how much do you owe the
credit card company?

6.6.3: A businessman is choosing investments. He has 1, 000, 000/ = to invest. Bank S offers
him 15% annual simple interest. Bank C offers him 10% annual compound interest, compounded
twice per year. Bank E offers him 9.5% annual compound interest, compounded continuously.
Which bank should he choose (a) if he plans to wait 10 years? (b) if he plans to wait 30 years?
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6.6.4: A certain malaria medicine has a absorption constant k = 0.231 days−1. What is the
half-life of its concentration in the blood stream?

6.6.5: A biologist isolates a bacteria and keeps it in a petri dish. She finds that every 4.6 hours,
the bacteria population has doubled. Write an equation for the bacteria population P in terms
of its initial population Po.

6.6.6: (NECTA 2006) Juma wants to invest Sh. 150,000 at a rate of 10% compounded
annually and accumulate the principal to Sh. 250,000. Using a calculator with a log key, find
how long this will take given that:

S = P (1 + i)n

Where i = interest, n = number of years, and P = principal. (6 marks)
(Note: To be technically correct, Juma’s principal does not change. Rather, it is his amount
that accumulates to 250,000/=.)

6.6.7: (NECTA 2002) The population of a sample is given by P (t) = 10.000e0.4t, where t is
in years. Use a non-programmable calculator to find the time to the nearest whole number on
which the population of the sample will double. (6 marks)



Appendix A

The Greek Alphabet

Here are all the letters of the Greek alphabet, which we use so much as variables. You can see
here the capital, lowercase, name, and common uses for each letter.

A, α alpha angles, angular acceleration
B, β beta angles, feedback
Γ, γ gamma surface tension, ratio of specific heats
∆, δ or ∂ delta changes and differences, big or small
E, ε epsilon very small amount, electric field constant
Z, ζ zeta
H, η eta viscosity
Θ, θ theta angles, temperature
I, ι iota

K, κ kappa constants
Λ, λ lambda wavelength, half-life
M, µ mu coefficient of friction, magnetic field constant, linear density
N, ν nu
Ξ, ξ xi
O, o omicron
Π, π pi 3.1415926...
P, ρ or % rho density (per volume)
Σ, σ sigma sums and density per area
T, τ tau torque or moment
Υ, υ upsilon
Φ, φ or ϕ phi functions, flux and angles, especially phase angles
X, χ chi statistical test
Ψ, ψ psi functions

Ω, ω omega resistance and angular frequecy or angular velocity
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Appendix B

Notation

Sets

The set of all real numbers is written R. Sometimes this is modified to R+ for positive real
numbers or R− for negative real numbers. The set of integers, {. . . − 3,−2,−1, 0, 1, 2, 3 . . .} is
written Z. The ‘null set’ or ‘empty set’, which has no elements, is written ∅. If you want to
take things out of a set, you can use a backslash, \. For example R \ 0 is the set of all real
numbers except 0.

Sets are usually called capital letters, A, B, C, etc. The complement of A can be written as
A{ or A′. In defining sets ∈ means ‘in’, and a colon, ‘:’, means ‘such that’. Thus {x ∈ R : x > 4}
is the set of all real number x such that x is greater than 4. Another example for the use of ∈
is π ∈ R, pi is in the real numbers.

The set operations are ∪ union, and ∩ intersection.

General Math

Sometimes common phrases are abbreviated. ‘Therefore’ can be written as ∴, ‘implies that’ is
⇒, and ‘if and only if’ as ⇔. Many people write a ‘booyah box’, �, at the end of a proof to
celebrate, ‘Booyah! I finished the proof!’

Relations include =, >, ≥, <, ≤. Any relation with a slash / through it means ‘not’. Thus
6= is not equal to and /∈ means ‘not in’. Approximately equal to is ≈ or '. Proportional to is
∝. Much less than is � and much greater than is �.

A function f is often written f(x) = . . ., but can also be written f : x 7→ . . .. The
domain of f(x) can be written dom(f(x)), and the range ran(f(x)). The composition of 2
functions, f and g is written as f(g(x)) or f ◦ g(x). The inverse of f(x) is written f−1(x). This
holds also for trigonometric functions, hence if sin θ = A, it is correct that sin−1A = θ. But
sin−1 θ 6= csc θ = 1

sin θ . Another notation for the inverse trigonometric functions is to write ‘arc’
as a prefix. Thus sin−1A = arcsinA = θ, cos−1B = arccosB = θ, and tan−1C = arctanC = θ.

‘Right’, ‘perpendicular’, ‘orthogonal’, and ‘normal’ all refer to a 90◦ or π/2 radian angle.
This can be written ⊥. Parallel can be written as //.

In a fraction n
d , the top is called the ‘numerator’ and the bottom the ‘denominator’. Loga-

rithms of base 10 and and base e are abbreviated as log x (or sometimes lg x) and lnx, respec-
tively.

The sum a1 + a2 + a3 + · · ·+ an can be written as

n∑
i=1

ai
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Vectors and Matrices

Vectors are written as lower case letters in different ways. ~a,a, â, anda are all vectors. Even
a squiggle ‘∼’ underline is sometimes used. Usually the hat is reserved for unit vectors, î or
p̂. The magnitude of a vector is written as |~a|. The magnitude squared sometimes is written
|~a|2 = ||~a||.

Vector operations are the dot product, ~a ·~b, and the cross product ~a×~b. Rarely, the cross
product is called the ‘vector product’ and is written ~a∧~b. The projection of ~a onto ~b is written
proj~b~a.

Matrices are usually capital letters A, B, C, etc. The determinant of a matrix A is written
as det(A) or |A|. The transpose is AT , and the inverse is A−1.

Calculus

The limit of f(x) as x approaches a is written

lim
x→a

f(x)

If under the limit it is written x→ a+ then the approach is from above, from the right. If it is
x→ a− then the approach is from below, from the left.

A capital delta, ∆, usually means ‘change’. Thus

m =
∆y
∆x

is defining slope as change in y divided by change in x. A lower case delta, δ, is a very small
change, usually used before taking a limit to make a derivative. Another way of writing the
concept of the derivative would be

lim
δx→0

δy

δx

Newton’s Notation: The derivative of y is y′′ and the derivative of f(x) is f ′(x), these are
read ‘y prime’ and ‘f prime of x’. Second derivatives are y′′ of f ′′(x).

Leibnitz Notation is more exact because it indicates the variable that is differentiated with
respect to. d

dx is the differential operator, it tells you to take the derivative of what follows with
respect to x. For example d

dx(y) or fracddt(s(t)). The derivatives, once taken, can be written
as dy

dx or df
dx or dsdt. Second derivative are written as d2y

dx2 because there are 2 d
dx ’s, but only one

y.
Other notation: Sometimes, especially for derivatives with respect to time, a dot is used.

Thus, if horizontal position is x, horizontal velocity would be ẋ, and horizontal acceleration ẍ.
For integration, ∫ b

a
f(x) dx

is the ‘integral from a to b of f(x) with respect to x’.
∫

is an integral sign, a and b are the bounds
or limits of integration: a is the lower bound, b is the upper bound; f(x) is the integrand, and
dx indicates that x is the variable of integration.

Probability and Statistics.

The factorial of n is n!. The number of ways or choosing and permuting r objects chosen from
n total objects, with order, is nPr. The number of ways of choosing r objects from n total

objects, without order, is nCr, which is also written
(
n
r

)
.

The probability of an event A is written P (A), the probability of A given B is P (A|B).
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Exercise Hints and Solutions

Hints and Solutions to Chapter 1

Hints and Solutions to Section 1.1

1.1.8. 2x
√
y

y−x

Hints and Solutions to Section 1.2

1.2.1. S
1.2.4. (a) f−1(x) = lnx. (b) Answers may vary. (c) It is undefined.

Hints and Solutions to Section 1.3

1.3.1. (a) logb x = y. (b) log2 x = 4. (c) log2 8 = n. (d) lnπ = x. (e) log a = z. (f)
logxy ab = n+ 1. (g) log2 4 = 2. (h) log2 1024 = 10.
1.3.2. (a) 4 = 22. (b) c = b8. (c) e1.06471 = 2.9. (d) e = 1.71828. (e) 10x = 4. (f) g2 = ab.
1.3.3. (a) 0.7231. (b) −0.4935. (c) 4. (d) 0. (e) −0.693. (f) 0.693. If x is less than b then
logb x is negative.
1.3.4. (a) x = 3. (b) x = 2. (c) x = 4/7. (d) x = 8/9.
1.3.6. (a) ln y = 4 ln(x2 − 3) + 8 ln(x3 − 1)− 12 ln(x+ 1). (b) ln y = 4 ln(sinx) + 3 ln(cosx) +
2x− 3

2 ln(x3 − 1).
1.3.7. (a) x = 31/4. (b) x = 101016/3

(c) x = 256
1.3.10. 4
1.3.11. Hint: make N the subject. Answer: N = 8
1.3.12. (a) 0.
(b) i. 2 log 2 + log 3 = 1.0791
ii. Hint: knowing log10 3 does not help, but you also know log10 10.

Answer: 1− log 2 = 0.6990
1.3.13. x = 10−1 = 0.1
1.3.14. Hint: combine all into one logarithm, then you will find x = 3.
1.3.15. y = x3.25
1.3.16. Hint: First let z = logx 3 and find z.

Answer: x = 3 or x = 3−1/4

1.3.17. Hint: ax+1 = ax · a
Answer: −17/9

1.3.18. (a) 1.49752, (b) 21.4644
1.3.19. (a) x = 9, (b) Hint: Change everything to logs base 3, then substitute y = log3 x.
Answer: x = 3 or x = 27.
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Hints and Solutions to Section 1.4

1.4.1. (a) C = (5, 2), (b) m = 3/2

Hints and Solutions to Section 1.5

1.5.1. Hint: Multiply through to put everything in terms of sin θ, then use the quadratic
equation to get 2 possible values of sin θ. Then use the unit circle and a calculator to find all 4
possibilities for θ.
Answer: θ = 18◦ or 162◦ or −54◦ or −126◦.
1.5.2. x = 20◦

1.5.3. x
2 = 2y − y2

1.5.4. θ = 60◦

1.5.5. b2(1 + c2) = a2c2

1.5.6. x = 90◦ or 210◦ or 270◦ or 330◦

1.5.7.

Hints and Solutions to Section 1.7

1.7.5. Hint: start with tan(2A+B) = 1. Use identities to expand this expression.

Hints and Solutions to Chapter 2

Hints and Solutions to Section 2.1

2.1.1. (a) 0, (b) 1, (c) ∞, (d) −∞.
2.1.2. (a) Does not exist, (c) 2x, (d) 3x2.
2.1.3. (c) Does not exist.

Hints and Solutions to Section 2.2

2.2.1. f ′(x) = 2x− 1
2.2.2. g′(x) = 2x+ 1
2.2.3. y′ = 1

2
√
x+1

2.2.4. f ′(x) = 3x2

2.2.5. h′(x) = 3x2 − 2x
2.2.6. 2x− 1

2
2.2.7. 3x2 − 6x+ 1

Hints and Solutions to Section 2.3

2.3.1. (a) f ′(x) = 3x2, (b) g′(x) = 6x2 + 6x, (c) f ′(x) = 4x, (d) g′(x) = 4x.
2.3.2. (a) y′ = 5x4− 1

2x
2, y′′ = 20x3−x; (b) R′(θ) = 10θ−3, R′′(θ) = 10; (c) f ′(x) = 11x10−1,

f ′(x) = 110x9; (d) s′(t) = 3, s′′(t) = 0.
2.3.4. (a) f ′(x) = 3

2 x
1
2 , (b) g′(x) = −1

x2 , (c) f ′(x) = 1
3 x

−2
3 , (d) g′(x) = −4x−5.

2.3.5. Hint: a horizontal tangent means the gradient is 0.
Answers: (c) x = −2 and x = −6, (d) No horizontal tangents.

Hints and Solutions to Section 2.4

2.4.1. (a) f ′(x) = cosx+ 6x, (d) X ′(t) = −4t−5 − t−1.
2.4.2. Hint: for (c) use logarithm rules to simplify first.
Answers: (a) f ′(x) = sec2 x+ sinx, (c) h′(x) = 2/x.
2.4.3. (b) g′(x) = 6x+ 4x−2 + x−1, (d) F ′(r) = q1q2

4πεor2



129

Hints and Solutions to Section 2.5

2.5.1. (c) y′ = (3x+ 4) cosx+ 3 sinx
2.5.2. (c) f ′(x) = (4x− 1)(8x3 − x2 + 1) + (24x2 − 2x)(2x2 − x)
2.5.3. (a) g′(x) = ex sinx + ex cosx, (b) y′ = cosx− sin2 x = cos(2x), (c) R′ = cos θ, (d)
y′ = −15x−4 cosx− 5x−3 sinx.
2.5.4. (a) y′ = 6 + 6 lnx, (b) f ′(x) = 2(x3 + 3x − 1)(3x2 + 3), (c) g′(x) = 2x, (d) h′(x) =
( 1

3 x
3 − 2x) sec2 x+ (x2 − 2) tanx.

2.5.5. (a) y′ = 2 + 2 lnx
(b) Hint: ax+y = ax · ay
(c) y′ = 2 cos(2θ)
2.5.6. (c) y′ = (3x+1)4x−6x2

(3x+1)2

2.5.7. (c) y′ = − csc2 θ

2.5.8. (a) f ′(x) = 15x2(x+1)−(5x3−2)
(x+1)2

, (b) g′(x) = 1−lnx
x4 , (c) y′ = 2x, (d) H ′ = 4yey−2y2ey

e2y .

2.5.9. (a) Q′ = (x2−1) 1
2
x−1/2−2x(1+

√
x)

(x2−1)2
, (b) y′ = 0.

2.5.12. (a) y′ =
[
(2x− 5)[(x2 + 1)(6x2 − 2x) + 4x4 − 2x3]− 2(x2 + 1)(2x3 − x2)

]
· (2x− 5)−2,

(b) y′ = ex · (2x2−1)(5x+5)−20x2

(2x2−1)2
,

(c) y′ = 3x
cosx + 6x cosx+3x2 sinx

cos2 x
· lnx.

2.5.13. First, find f ′(x) = 4x2+1
2x2 , then f ′(1) = 5/2 is the gradient.

Hints and Solutions to Section 2.6

2.6.1. (a) y′ = −12(4− 2x)5, (b) f ′(x) = −6(x+ 1) sin(3x2 + x), (c) g′(x) = 4 tan3(x) · sec2(x),
(d) y′ = 1

2 (3x2 − 1)(x3 − x+ 1)−1/2.
2.6.2. (a) v′ = −12 sin(3t− 6), (b) h′ = 8x−1

4x2−x , (c) y′ = 3e3x+1, (d) X ′ = 8t(2 + t2)3.
2.6.3. (a) y′ = (27x2−18x+9)(x3−x2 +x)8, (b) y′ = −(24t−4)(3t2− t)−5, (c) y′ = 2x cos(x2),
(d) y′ = 2 sinx cosx.
2.6.4. (a) y′ = 3x2 cos(x3), (b) y′ = 3 sin2 x · cosx, (c) y′ = 4x3 cos(x4), (d) y′ = 4 sin3 x · cosx.
2.6.5. (a) f ′(x) = x2(x3 + 1)−2/3, (b) g′(r) = 3r+2

r2+r
, (c) h′(t) = 12te2t2 , (d) y′ = −2x sin(x2).

2.6.6. (a) y′ = −(2x+1) cos(x2 +x), (b) f ′ = − sin(sin(x)) ·cos(x), (c) g′ = −4x cos(x2) ·sin(x2),
(d) A′(t) = iPeit.
2.6.7. (a) y′ = xex + ex, (b) f ′(x) = x2ex + 2xex, (c) g′(x) = e2x + 2xe2x, (d) h′(x) =
2x2e2x + 2xe2x.
2.6.8. (a) y′ = 2e2x(x)(x+ 1), (b) f ′(x) = 2

√
x2+1−2x2(x2+1)−1/2

x+1 , (c) g′(x) = cos2 x− sin2 x, (d)
h′(x) = − cos(cosx) · sinx.
2.6.9. (a) y′ = 2 cos(x2) cos(2x)+2x sin(2x) sin(x2)

cos2(x2)
, (b) f ′ = −4(x2−1) cos3(x) sin(x)−2x cos4(x)

(x2−1)2
, (c) g′ =

2 sin(x) cos(x)[cos2(x)− sin2(x)], (d) h′ = 2 cos(2x) tanx+ sec2 x sin(2x).
2.6.10. (a) y′ = 6x

3x2−1
− 1

x = 3x2−1
3x3−x , (b) y′ = 4

x+1 − tanx = 4 cosx−(x+1) sinx
(x+1) cosx .

2.6.11. y′ = −3 cos2 x sinx
2.6.12. Hint: First use logarithm rules to simplify.
Answer: y′ = 3

3x−2 −
1

x+1

2.6.13. (1 + 3x)e3x

2.6.14. 2 cos(2x)
sin(2x)

2.6.15. 4
3 x
−2/3 csc( 3

√
x)

Hints and Solutions to Section 2.7

2.7.2. Hint: for (c) and (d) expand first. Or use the Chain Rule.
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Hints and Solutions to Chapter 3

Hints and Solutions to Section 3.1

3.1.3. y = x2 − x

Hints and Solutions to Section 3.2

3.2.1.
∫

sec2 x = tanx, but
∫

secx is undefined.
3.2.2. y = 1

3x
3 − 1

2x
2 + 1

2

Hints and Solutions to Section 3.3

3.3.1. 512
81

3.3.2. 1− cosx
a

Hints and Solutions to Section 3.4

3.4.7. 8− 3
e + 2e

3.4.10. −1
3 cos3 x

Hints and Solutions to Section 3.8

3.8.1. 1
36

[
(2b3 + 3)6 − (2a3 + 3)6

]
Hints and Solutions to Chapter 4

Hints and Solutions to Section 4.1

4.1.1. (a) −3̂i+ 4ĵ
(b) 5
(c) −3

5 î+ 4
5 ĵ

4.1.2. m = 5, n = 1
4.1.3.
4.1.4. (7/3, 7/3)

Hints and Solutions to Section 4.2

4.2.4. If they are perpendicular, then (~a−~b) · (~a+~b) = 0

Hints and Solutions to Section 4.4

4.4.1. Hint: Use the coordinates to write position vectors for the Hydrogens and the Carbon,
then subtract position vectors to get displacement vectors, for example ~H1 − ~C might be the
displacement vector from Carbon to one Hydrogen. Then dot these displacement vectors and
solve for the angle between them.
4.4.3. Hint: Remember, ~F = m~a, and ‘unit mass’ means that mass m = 1.
4.4.4. The position vector of ~Q relative to ~P is given by ~Q − ~P . And you know how to find
velocity and acceleration from position... differentiate!
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Hints and Solutions to Section 4.5

4.5.1. (c) Undefined.
4.5.2.
4.5.3.
4.5.4.
4.5.5. (a) Undefined,
4.5.7.
4.5.9. x = −4, y = 11
4.5.10. AB = I =
1 0 0
0 1 0
0 0 1

Hints and Solutions to Section 4.6

4.6.2. T (0, 0) = (0, 0).
4.6.4. k = 4

Hints and Solutions to Section 4.8

4.8.2. The positive x-axis in vector form is in the direction î+ 0ĵ + 0vk.

Hints and Solutions to Chapter 5

Hints and Solutions to Section 5.1

5.1.1. 5/36 = 0.139
5.1.2. i. 1/27 = 0.037, ii. 4/27 = 0.148.
5.1.3. 0.765
5.1.4. 3326400
5.1.5. Hint: ‘At most 1 which is defective’ means that either 9 out of 10 are not defective OR
all 10 are not defective. If 9 of 10 are not defective, be sure to CHOOSE which one is defective.
Answer: 0.736
5.1.6. 60
5.1.7. (a) They are not mutually exclusive. (b) They are mutually exclusive.
5.1.8. 0.6
5.1.9. 0.4196
5.1.10. (a) 0.6, (b) 0.3
5.1.11. P (A) + P (B) = 0.91 6= 0.78 thus the events are not independent.
P (A) + P (B) 6= 1 thus the events are not mutually exclusive.
5.1.12. 0.222

Hints and Solutions to Section 5.4

5.4.1. (a) 0.322, (b) 0.0436, (c) 0.0873.

Hints and Solutions to Section 5.5

5.5.5. x̄ = 89.65kg, σ =
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Hints and Solutions to Chapter 6

Hints and Solutions to Section 6.4

6.4.2. (a) y6 + 6y5x+ 15y4x2 + 20y3x3 + 15y2x4 + 6yx5 + x6

(c) 1− 6x+ 15x2 − 20x3 + 15x4 − 6x5 + x6



Appendix D

Brief Health Matters

Some Facts about HIV/AIDS

How to Properly Use a Condom

To be effective, you must use a condom every time you have sex. A condom is good for one use,
do not use the same condom more than one time.

A condom should be used anytime semen or vaginal fluids are exchanged.
To use a condom properly, first make sure the package is not torn and that the date of

expiration is not passed.
When the penis is erect, open the packet carefully. Do not use a sharp object (teeth, razor

blade, knife, scissors) to open the packet because you might tear the condom.
Pinch the tip of the condom so that air is not trapped inside, then unroll the condom down

over the penis.
After having sex, make sure that the condom is still on the penis when the penis is removed

from the vagina. Immediately remove the condom, being careful not to spill the sperm inside.
Tie a knot near the base of the condom to close it. Throw it down a pit-toilet or into a burn
pile. (It is best not to flush the condom down a flush toilet as it may become stuck in the
pipes.)

This is so important that I will write the entire thing is Kiswahili, too.

Wakati wa kutumia kondomu ya kime ni muhimu kufuata hatua zi-
fuatazo. Hakikisha kwamba pakiti inayoihifadhi haiapasuka na kwamba
tarehe ya kuisha muda wake haijafika.

Kama uume umedinda, fungua pakiti kwa uangalifu. Usitumie wembe,
meno, mkasi, au kisu! Minya sehemu ya juu kutuoa hewa ndani ya kon-
domu wakati wa kuvalisha uume, ili kuzuia kupasuka kwa kondomu wakati
wa kujamiiana. Visha uume kondomu taratibu mpaka uufunike wote.
Ukiwa na uhakika kwamba kondomu imevishwa inavyotakiwa, unaweza
kukutana kimwili na mwanamke.

Wakati wa kutoa uume kutoka ukeni, uwe mwangalifu kwamba kondomu
bado ipo sehemu inayopaswa kuwa. Baada ya kutoa uume kutoka ukeni,
vua kondomu kwa uangalifu uume ukiwa bado umedinda, ili kuepuka sha-
hawa zisimwagikie ukeni. Tupa kondomu iliyotumika kwenye choo cha
shimo au uichome. Usitupe kondomu iliyotumika ovyo.
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Either the man or the woman can put the condom on the penis. Both
can put it on, both can buy it.

Mwanamume au mwanamke anaweza kuweka kondomu uumeni. Wote
wawili wanaweza kuiweka, wote wawili wanaweza kuinunua dukani.

Condoms must be used only once, because if they are used twice or three
times they will not protect well from pregnancy and sexually transmitted
diseases. Condoms must not be washed and reused. They must be thrown
into a pit-toilet or burnt after 1 use. Condoms are made to be used only
once.

Kondomu inapaswa kutumika mara moja tu kwa kila mshinda wakati
wa kujamiiana, kwa sababu ikitumika mara 2 au 3, uhakika wa kuzuia
mimba wala uambukizo wa magonjwa ya zinaa unatoweka. Kondomu isi-
fuliwe ali mara baada ya kutumika itupwe kwenye choo cha shimo au
ichomwe moto. Kondomu zimetengenezwa kwa kutumiwa mara 1 tu.


